Project Report No. 447 March 2009

Price: £20.00

'Canopy management' and late nitrogen applications to improve yield of oilseed rape

by

P.M. Berry¹, J.H. Spink²

¹ADAS High Mowthorpe, Duggleby, Malton, North Yorkshire YO17 8BP ²ADAS Rosemaund, Preston Wynne, Hereford HR1 3PG

This is the final report of a twenty-eight months project which started in June 2006. The work was funded by a contract of £51,000 from HGCA (Project No. 3277) and contributions from GrowHow UK Ltd (£70,100), Bayer Cropscience Ltd (£16,500) and Monsanto UK Ltd (£3000) making a total of £140,600.

HGCA has provided funding for this project but has not conducted the research or written this report. While the authors have worked on the best information available to them, neither HGCA nor the authors shall in any event be liable for any loss, damage or injury howsoever suffered directly or indirectly in relation to the report or the research on which it is based.

Reference herein to trade names and proprietary products without stating that they are protected does not imply that they may be regarded as unprotected and thus free for general use. No endorsement of named products is intended nor is it any criticism implied of other alternative, but unnamed, products.

Contents

1. Abstract	2
2. Summary	3
2.1 Introduction	
2.2 Aim and objectives	
2.3 Materials and Methods	
2.4 Results	
2.5 Conclusions	
3. Introduction & Objectives	
3.1 Introduction	
3.2 Aim and objectives	
4. Experimental design, materials and methods	
4.1 Canopy Management approach	
4.2 Field experiments	
4.3 Measurements	
5. Results	
5.1 Experiment Year 1 – 2005/6	
5.2 Experiment year 2 – 2006/7	
5.3 Experimental year 3 – 2007/8	
6. Discussion	
6.1 Effects of Canopy Management on yield	
6.2 Testing the Canopy Management principles	
6.3 Predicting fertiliser N requirement	
6.4 Folicur	
7. Conclusions	
8. References	

1. Abstract

Previous HGCA-funded work demonstrated that oilseed rape yield is reduced by the development of an over-large canopy. This project further developed and tested Canopy Management principles that will help growers achieve an optimum sized canopy through the correct timing and rate of nitrogen (N) fertiliser. Canopy Management involves measuring the amount of N in the soil and crop in February (soil N supply – SNS) and then applying sufficient N to build an optimum sized canopy with a green area index of 3.5 units by flowering followed by variable amounts of late N applied between yellow bud and early flowering depending on yield potential. When the SNS was moderate or high the first N application made to the Canopy Managed treatments was at the 2nd conventional split timing (start of stem extension, end March/early April). When the SNS was low a small proportion of N was applied at the 1st conventional split (end February/early March). During the project, methods were developed to calculate what proportion of N must be applied early for crops with a small SNS. Experiments were set up in 2005/6, 2006/7 and 2007/8 at ADAS Boxworth, High Mowthorpe and Rosemaund. Each experiment included two varieties (Winner and 'low biomass' variety Castille), grown at seven N rates (0 to 360 kg/ha) applied at Conventional timings (50% in late Feb/early March and 50% in late March) and Canopy Management timings, with and without Folicur applied at green bud.

The project showed that delaying N through using Canopy Management principles increased yield by up to 0.36 t/ha in situations where the crop would have produced an over-large and lodging-prone canopy. The yield increases were associated with reduced stem growth leading to shorter plants and less lodging, and possibly increased seed set. Methods of employing Canopy Management were developed so that they are applicable for all types of crop, including low biomass varieties and crops with a small SNS. The assumptions that underlie Canopy Management were validated within the study. Using the Canopy Management principles to calculate the N fertiliser requirement was shown to be accurate across sites and seasons, and more accurate than RB209 guidelines. The application of Folicur at green bud increased yield by up to 0.32 t/ha and resulted in average yield increases across the nine experiments of 0.15 t/ha for Winner and 0.10 t/ha for Castille, in the presence of minimal amounts of disease. Using Canopy Managed N timings did not affect the size of the yield response to Folicur. Results from this project have been used to develop the 'N-Calc' fertiliser recommendation system run by Growhow UK Ltd and to help revise the current RB209 guidelines.

2. Summary

2.1 Introduction

The current recommendations for N fertiliser applications to oilseed rape (RB209) were formulated in the late 1980s on varieties such as Rafal and Ariana. Since then the average yield of oilseed rape varieties in the Recommended List trials have increased from 3.7 t/ha to 4.8 t/ha, with the best varieties yielding more than 5 t/ha. Alterations in N management may be required to realise the high yield potential of new varieties. Conventional RB209 recommendations are for N to be applied in two splits at the end of February/early March and end of March/early April. N is sometimes applied as early as late January/early February. Previous HGCA-funded work demonstrated that yield is reduced by the development of an over-large canopy at flowering (Project Report OS49). This may arise from too much early N, from early or overly dense plant establishment or from mild autumn and winter conditions. The result of this is a thick flower layer reflecting much of the incoming light which causes few seeds to be set and a low yield potential. Canopy size can be optimised by adjusting the timing and rate of N to the size of the crop and the soil N supply. Nitrogen is a particularly valuable tool for avoiding the production of over-large canopies which may arise from uncontrollable factors such as mild autumn and winter conditions or high soil nitrogen supply.

2.2 Aim and objectives

2.2.1 Project Aim

Develop nitrogen management strategies that help to realise the high yield potential of modern oilseed rape varieties.

2.2.2 Specific Objectives

- I. Understand the physiological mechanisms by which a canopy management approach to N use increases yield.
- II. Understand how the canopy management approach may need adjusting for different types of crop.

2.3 Materials and Methods

2.3.1 Canopy Management approach

Previous HGCA-funded work has demonstrated that oilseed rape must achieve an optimum green area index (GAI) of 3.5 units at flowering and the crop must take up 50 kg N/ha to build each unit of GAI. This means that the crop must take up 175 kg N/ha to achieve the optimum GAI of 3.5. Canopy Management principles assume that any N that the crop has taken up by the end of winter remains in the crop until flowering and therefore contributes to the production of the optimum GAI. The principles also assume that oilseed rape takes up 100% of the soil mineral N measured in the soil in February and 60% of any fertiliser N applied (55% on shallow soils over chalk or limestone). These uptake efficiencies are similar to average figures that have been measured in wheat. The rate of crop N uptake is assumed to be 3 kg N per ha per day from the start of active spring growth until flowering. It was expected that crops with a higher than average yield potential will require additional N which should be applied between yellow bud and mid-flowering to avoid this additional N causing the optimum canopy size to be exceeded.

In early February, the amount of N in the soil and crop were measured and this was used to calculate how much fertiliser N was required for the crop to achieve a GAI of 3.5 using the assumptions described above.

Example: In February the amount of N in the soil was 50 kg N/ha and the amount of N in the crop was 50 kg N/ha. It is assumed that by flowering the crop will contain all of this soil and crop N (100 kg N/ha). This means it will be 75 kg N/ha short of the amount required for the optimum GAI. At 60% efficiency, 125 kg of fertiliser N must be applied to make up this shortfall.

In general the fertiliser N required to achieve the optimum sized canopy was applied at the 2nd conventional split timing at the start of stem extension (late March/early April). A small proportion of the N was applied at the 1st conventional split timing (late February/early March) when it was calculated that there would be insufficient time (assuming an uptake of 3 kg/ha/day) for the crop to take up all of the N required to achieve an optimum sized canopy by mid flowering if the first application was delayed. Additional N for high yield potential was applied at yellow bud to mid flowering.

2.3.2 Field experiments

2.3.2.1 Sites

Experiments were carried out in 2005/6, 2006/7 and 2007/8. Experiments were drilled at ADAS Boxworth in Cambridgeshire (Clay, Hanslope series), ADAS High Mowthorpe in N. Yorkshire (shallow silty clay loam over chalk, Andover series) and ADAS Rosemaund in Herefordshire (silty clay loam, Bromyard series).

2.3.2.2 Experimental factors and design

Four factors were investigated; variety, N rate, N timing and a growth regulatory fungicide Folicur. At each site the variety, N rate and N timing treatments were fully randomised within each of four replicate blocks, apart from Boxworth and High Mowthorpe in 2006 in which variety formed main plots within which the N rate and N timing were randomised. At each site Folicur was then applied across one half of each block and the position of the Folicur strip was randomised for each block. Each individual plot measured 18 m by 3.5 m.

The two varieties used were Winner and the 'low biomass' variety Castille. Seven N rates were used (0, 60, 120, 180, 240, 300, 360 kg/ha). All N was applied as ammonium nitrate (34.5% N) at either Conventional or Canopy Managed timings. Conventional timings were for 50% of the N applied in late February/early March and 50% applied at the start of stem extension (late March/early April). Canopy Management timings were for all, or the majority, of the N required to achieve the optimum sized canopy to be applied at the 2nd conventional split timing (start of stem extension) and the remaining N was applied between yellow bud and mid-flowering. The Folicur treatment was applied at green bud. The rate of Folicur was dependent on the size of the crop canopy measured in February. Crops with a GAI of less than 1 received 0.5 l/ha and crops with a GAI of 1 or more received a rate of 1.0 l/ha. Fungicides without growth regulatory activity were used to minimise disease. Adequate Sulphur was ensured by applying 75 kg/ha SO₃ as Magnesium Sulphate (Kieserite) to all treatments at the same time as the first N split was applied.

2.3.2 Measurements

Assessments included the amount of mineral N in the soil, together with the GAI and N content of the crop, in February. At flowering, the crop height, light interception/reflection, GAI, biomass and crop N content were measured. At crop maturity the biomass and N content of the stem, pod walls and seeds were measured.

Pod greenness and lodging were assessed at regular intervals. Yield was determined for all treatments using a small plot combine from an area of at least 30m² and the moisture content and oil content of the seed was measured.

2.3.3 Calculations and Statistics

Analysis of variance procedures within Genstat (8.1) (www.genstat.com) were used to calculate whether treatments were significantly different. Linear plus exponential N response curves were fitted to the seed yield data. The economically optimum N rate was calculated using a breakeven ratio of 2.5 because this has previously been used as a standard for fertiliser recommendations. The gross margin over N costs was calculated by assuming a seed yield price of £230/t (9% moisture), ammonium nitrate containing 34.5% N costing £200/t (which were typical average prices during the project and these give a breakeven ratio of 2.5). The oil premium was calculated as 1.5% of the basic oilseed rape price for each percentage point that the oil content was above 40%.

2.4 Results

2.4.1 Effects of Canopy Management on yield

The regression analyses showed that the Canopy Managed and Conventional N strategies did not result in significantly different N optima in any of the experiments. In the 2005/6 season the Canopy Management approach increased yield over the Conventionally-timed N treatments at the sites with a moderate or large combined supply of N in the soil and crop in February (soil N supply – SNS). The yield of Winner was increased by 0.36 t/ha at Boxworth and 0.15 t/ha at Rosemaund, and the yield of Castille was increased by 0.10 t/ha at Boxworth with no effect at Rosemaund (Table 2.1). The yield increases were associated with reduced lodging as a result of stem shortening. In later experiments measurements showed that Canopy Management reduced height by up to 10 cm. Canopy Management was also shown to reduce the size of the canopy at flowering. This will have helped the crops, which would otherwise have produced an over-large canopy, to achieve the optimum sized canopy and set more seeds/m². At High Mowthorpe the SNS was just 67 kg/ha and the Canopy Management approach had no effect on Winner and slightly reduced the yield of Castille. This result demonstrated that a greater proportion of N must be applied early to crops with a small SNS to give the crop sufficient time to take up enough N by flowering to achieve the optimum GAI. This was used to modify the Canopy

Management approach for later experiments. Although there was no significant interaction between Folicur and N management, the Folicur did appear to increase the yield of Conventionally-managed crops at Rosemaund and Boxworth more than the Canopy Managed crops. There was, however, no significant interaction between N rate and Folicur. Folicur did significantly increase the yield of both conventional and Canopy Managed treatments at High Mowthorpe, which was probably due to an effect on light leaf spot rather than a PGR effect.

Table 2.1. 2005/6 experiment summary.

	BX06		HM06		RM06	
†Jan/Feb soil mineral N (kg/ha)	50		35		60	
Jan/Feb crop N content (kg/ha)	72		32		33	
Jan/Feb GAI	1.40		0.57		0.63	
N timing strategy	Conv	CM	Conv	CM	Conv	CM
Optimum N rate (kg/ha)	70	70	239	239	224	224
N rate at 1 st split (end Feb/early March)	35	0	120	40	112	0
N rate at 2 nd split (early stem ext.)	35	70	119	140	112	140
N rate at 3 rd split (yellow bud to mid flower)	0	0	0	59	0	84
Yield at opt N Winner (t/ha)	3.40	3.76	3.69	3.62	4.40	4.55
Yield at opt N Winner + Folicur (t/ha)	3.60	3.74	3.86	3.89	4.62	4.58
Yield at opt N Castille (t/ha)	4.04	4.12	4.56	4.43	4.90	4.91
Yield at opt N Castille + Folicur (t/ha)	4.19	4.31	4.84	4.74	4.99	4.92

[†]Measured to 90 cm at Boxworth and Rosemaund and 60 cm depth at High Mowthorpe. Conv – conventional N timing strategy; CM – Canopy Managed N timing strategy.

In the 2006/7 season, the crops at each site had moderate to large canopies in February and in a typical season would have been expected to produce over-large canopies and to benefit from a Canopy Managed approach. However, negligible rainfall between the end of March and early May restricted canopy growth which resulted in moderate sized canopies at flowering. Across all the treatments at Boxworth, Canopy Management increased yield slightly by 0.08 t/ha (P=0.082). This advantage was greater at high N rates and for Winner, for example at 300 and 360 kg N/ha Canopy Manegement gave a 0.28 t/ha yield advantage. The yield increase was shown to result from less early lodging as a result of crop shortening and a small increase in seeds/m² which was probably caused by achieving a canopy size at flowering that was closer to the optimum. At Rosemaund Canopy Management did not affect yield despite the very dry spring. There was no effect on yield because Canopy Management reduced the

size of the canopy at flowering from above the optimum to slightly below the optimum, and because there was only slight lodging at this site. At High Mowthorpe Canopy Management reduced yield by 0.14 t/ha. The spring drought was most severe at this site which resulted in the development of a sub-optimal canopy at flowering. Canopy Management reduced the canopy size further and this resulted in slightly fewer seeds/m² set. Folicur significantly increased yield on Winner but not Castile at High Mowthorpe and Rosemaund but had no significant effect on yield at Boxworth.

Table 2.2. 2006/7 experiment summary.

	BX07		HM07		RM07	
†Jan/Feb soil mineral N (kg/ha)	43		58		54	
Jan/Feb crop N content (kg/ha)	92		54		61	
Jan/Feb GAI	2.37		1.21		2.08	
N timing strategy	Conv	CM	Conv	CM	Conv	CM
Optimum N rate (kg/ha)	54	54	156	156	165	165
N rate at 1 st split (end Feb/early March)	0	27	78	0	83	0
N rate at 2 nd split (early stem ext.)	54	27	78	120	83	100
N rate at 3 rd split (yellow bud to mid flower)	0	0	0	36	0	65
Yield at opt N Winner (t/ha)	3.05	3.05	4.50	4.31	4.66	4.66
Yield at opt N Winner + Folicur (t/ha)	2.90	3.06	4.64	4.42	4.88	4.84
Yield at opt N Castille (t/ha)	3.66	3.63	5.20	5.12	5.04	4.99
Yield at opt N Castille + Folicur (t/ha)	3.51	3.63	5.17	5.10	5.09	5.11

[†]Measured to 90 cm at Boxworth and Rosemaund and 60 cm depth at High Mowthorpe. Conv – conventional N timing strategy; CM – Canopy Managed N timing strategy.

In the 2007/8 season the crops at Boxworth and High Mowthorpe were very small in February following slow emergence during the dry autumn and had a modest amount of mineral N in the soil. After the first year the Canopy Management approach was further developed to be applicable for crops with a small SNS by including an estimate of the latest date when the N should start to be applied to give the crop sufficient time to build the optimum sized canopy. This assumed a rate of crop N uptake of 3 kg N/ha. Based on this 40 to 60 kg N/ha was applied at the first Conventional split timing (early March) at these sites compared with 118 to 128 kg N/ha for the Conventional strategy. Overall, there were no differences in yield between the two strategies at Boxworth and High Mowthorpe indicating that the Canopy Management strategy is appropriate for crops with a small SNS. The crop at Rosemaund also had a small SNS,

but with a moderate sized canopy and a very small amount of soil N. The original Canopy Management principles were tested at this site with all of the N required for the optimum canopy applied at the 2nd Conventional split timing (31 March). At this site Canopy Management did not affect the yield of Winner and reduced the yield of Castille by 0.29 t/ha. If the modified Canopy Management principles had been applied then 50 kg N/ha would have been applied in early March which is likely to have prevented any yield penalty and may have increased the yield of Winner. At Rosemaund, Folicur significantly increased the yield of Winner by 0.20 t/ha and had no effect on Castille. At High Mowthorpe, Folicur increased yield by 0.3 t/ha, although this was not statistically significant, and there was no significan effect at Boxworth.

Table 2.3. 2007/8 experiment summary.

	BX08		HM08		RM08	
†Jan/Feb soil mineral N (kg/ha)	58		38		12	
Jan/Feb crop N content (kg/ha)	8		10		50	
Jan/Feb GAI	0.19		0.10		1.36	
N timing strategy	Conv	CM	Conv	CM	Conv	CM
Optimum N rate (kg/ha)	256	256	236	236	128	128
N rate at 1 st split (end Feb/early March)	128	40	118	60	64	0
N rate at 2 nd split (early stem ext.)	128	180	118	170	64	128
N rate at 3 rd split (yellow bud to mid flower)	0	36	0	6	0	0
Yield at opt N Winner (t/ha)	3.82	3.80	3.42	3.43	4.01	3.98
Yield at opt N Winner + Folicur (t/ha)	3.84	3.92	3.76	3.65	4.20	4.18
Yield at opt N Castille (t/ha)	4.00	3.99	3.78	3.78	4.49	4.21
Yield at opt N Castille + Folicur (t/ha)	4.06	4.10	4.04	4.16	4.45	4.14

[†]Measured to 90 cm at Boxworth and Rosemaund and 60 cm depth at High Mowthorpe.

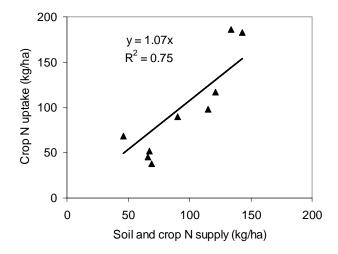
2.4.2 Testing the Canopy Management principles

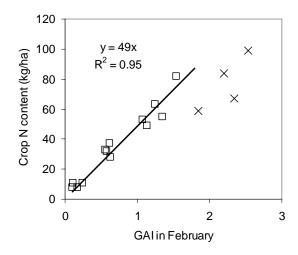
2.4.2.1 Soil N uptake efficiency

The efficiency with which the crop took up soil N was calculated by dividing the amount of N taken up by the unfertilised crop at harvest by the amount of mineral N measured in the soil (to 60 or 90cm) and the crop N in February. On average the efficiency with which soil N was taken up was estimated to be 107% (Figure 2.1) and there were no systematic differences between the sites or seasons. Several of the experiments had soil N uptake efficiency values of more than 100%, which may

Conv – conventional N timing strategy; CM – Canopy Managed N timing strategy.

simply be the result of sampling variation or may indicate that these crops took up some N which was mineralised after February. In 2008, it was possible to compare the two varieties and this showed that Castille had greater soil N uptake efficiency at each site with an average soil N uptake efficiency of 130% compared with 113% for Winner.




Figure 2.1. Relationship between the combined soil mineral N and crop N measured in February and the crop N uptake at harvest for crops grown at Boxworth, High Mowthorpe and Rosemaund in 2006, 2007 and 2008.

2.4.2.2 Fertiliser N uptake efficiency

The equivalent efficiency with which fertiliser N was taken up by the crop was calculated by subtracting the N taken up by the crop without fertiliser from the N taken up with fertiliser and dividing by the rate of fertiliser N applied. At the N rate that was closest to the economic optimum (167 kg N/ha on average) the fertiliser N uptake efficiency was calculated at 57%. The coefficient of variation of the fertiliser uptake efficiency across the 24 crops was 23%. Across the 3 sites, the fertiliser N uptake efficiency was lower in 2008 (47%) compared with 63% in 2006 and 63% in 2007. There were no systematic differences between sites or between the Canopy Managed and Conventional N timings. At a lower average fertiliser N rate of 100 kg N/ha the fertiliser N uptake efficiency was 67%. At 240 kg N/ha the average Fertiliser N uptake efficiency was 43%. These differences emphasise the importance of calculating the N uptake efficiency at the economically optimum N rate. The combined efficiency with which the soil N and optimum fertiliser N rate were taken up was 77% across all of the crops that were analysed in this study.

2.4.2.3 Relationship between GAI and crop N content

In February, crops with a GAI of between 0.1 and 1.5 contained 49 kg N per unit of GAI (Figure 2.2). Crops with GAIs of between 1.5 and 2.5, which were measured at Rosemaund and Boxworth in 2007 and Rosemaund in 2008, contained about 40 kg N per unit of GAI on average. These crops grew in seasons with a mild autumn and winter which increased the rate of over winter growth and it is possible that the tissue N concentration becomes diluted under these conditions. For crops measured at midflowering in 2007 and 2008 and the end of flowering in 2006, each unit of GAI up to the target GAI of 3.5 contained 43 kg N/ha (Figure 2.3). The slope of this regression line was not significantly different from a slope of 50 kg N per unit of GAI. There was no significant difference in the amount of N contained within each unit of GAI between N rate, variety, site or year. These results generally support the assumption that each unit of GAI contains 50 kg N/ha. However further work should test whether large canopies in February resulting from a mild autumn/winter contain less than 50 kg N/ha.

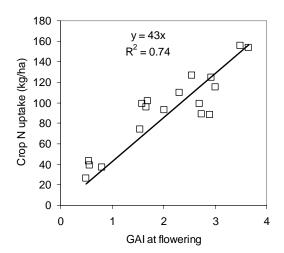


Figure 2.2. Relationship between GAI and crop N content measured in February Crops of GAI 1.5 or below (squares), crops above GAI 1.5 (crosses).

Figure 2.3. Relationship between GAI and crop N content at flowering.

2.4.2.4 Relationship between N requirement and yield

Whether or not the yield potential of each site affected the N supply required to achieve the yield potential was investigated by comparing the yield at the economic optimum (as calculated from the N response curves) with the supply of N available for crop uptake (100% of soil and crop N in February and 60% of the optimum fertiliser N) (Figure 2.4) to account for differences in residual soil N between sites. Data from an additional nine N response experiments from Growhow UK Ltd were also included

in the analysis. The regression analysis showed that each additional tonne of yield required an additional 36 kg/ha of crop available N. It is estimated that this would be equivalent to 36 kg/ha of soil mineral N or 60 kg/ha of fertiliser N for each additional tonne of yield.

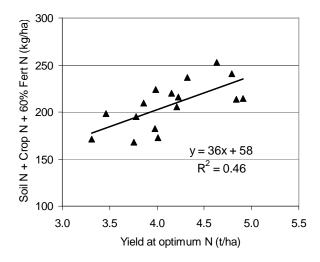


Figure 2.4. Relationship between the yield at the economic optimum N rate and the supply of N that is available for crop uptake. Each point represents data from an N response experiment.

2.4.3 Predicting fertiliser N requirement

The Canopy Management principles predict the optimum amount of fertiliser N based on measurements of the soil and crop N in February, a realistic estimate of the potential yield, together with assumptions about the efficiencies with which the crop takes up N from the soil and fertiliser. The accuracy of these principles for predicting N optima were tested retrospectively for each experiment described in this study and nine N response experiments from GrowHow. The accuracy of the RB209 guidelines; 1) using the book values to estimate the SNS and 2) using measured values of SNS were also tested. The tests showed that the Canopy Management principles were the most accurate method of predicting the optimum N rate with an average error of +/- 32 kg N/ha for yield (Table 2.4). RB209 guidelines with measurements of soil and crop N had an average error of 39 kg N/ha and 35 kg N/ha after accounting for the oil premia. Relying on RB209 look up tables to estimate the SNS, rather than taking a measurement, significantly increased the error to between 48 and 59 kg N/ha.

Table 2.4. Average error in the prediction of the fertiliser N requirement (kg N/ha).

	Optimum yield	Optimum yield after accounting for oil premia
RB209	+/- 48	+/- 59
RB209 with soil N measurements	+/- 39	+/- 35
Canopy Management	+/- 32	+/- 32

Based on 18 N response experiments between 2006 and 2008.

2.4.4 Folicur

Folicur applied at the green bud stage at a rate of 0.5 l/ha or 1.0 l/ha increased yield by up to 0.32 t/ha and did not cause any significant yield reductions. On average across all experiments Folicur increased the yield of Winner by 0.15 t/ha and Castille by 0.10 t/ha. Disease was minimised in all experiments using fungicides without growth regulatory activity. The effect of Folicur was generally the same for Canopy Managed or Conventional N timings. At the sites where Folicur significantly increased yield there was usually a significant reduction in lodging caused by Folicur. The reductions in lodging were at least partially caused by reductions in height of between 3 and 10 cm. There was no evidence of any differential height reduction between Canopy Management and Conventional N timings or between Winner and Castille. Greater height reductions occurred at higher N rates in only one experiment. It is possible that part of the yield increases were also caused by the Folicur treatment increasing the number of seeds set as a result of reducing the amount of light absorbed and reflected by the flowers.

2.5 Conclusions

- Delaying N through using Canopy Management principles increased yield by up to 0.36 t/ha in situations where the crop would have produced an over-large and lodging-prone canopy.
- Following modifications to account for the start date for N application the Canopy Management approach was shown to be robust both with backward crops and where dry conditions in the spring delayed N uptake.
- The yield increase has been shown to be associated with reduced stem growth leading to shorter plants and less lodging, and possibly increased seed set.
- Methods of employing the Canopy Management principles have been developed so that they are applicable for all types of crop including low biomass varieties and crops with small amounts of N in the crop and soil in February.

- The assumptions that underlie Canopy Management have been validated within the series of experiments carried out within this study.
- Using the Canopy Management principles to calculate the N fertiliser requirement based on the amount of N in the crop and soil in the spring, together with the yield potential, is accurate across sites and seasons, and more accurate that RB209 guidelines.
- The application of Folicur at green bud resulted in average yield increases across the 9 experiments in the presence of minimal amounts of disease of 0.15 t/ha for Winner and 0.10 t/ha for Castille. Using Canopy Managed N timings did not affect the size of the yield response to Folicur.
- Further work must investigate how much of the N that is mineralised after
 February is taken up by the crop.
- The results from this project have been used to develop the 'N-Calc' fertiliser recommendation system run by Growhow UK Ltd and to help to revise the relationship between N rate and potential yield in the new RB209 guidelines.

3. Introduction & Objectives

3.1 Introduction

The current recommendations for N fertiliser applications to oilseed rape (RB209) were formulated in the late 1980s on varieties such as Rafal and Ariana. Since then the average yield of oilseed rape varieties in the Recommended List trials have increased from 3.7 t/ha to 4.8 t/ha, with the best varieties yielding more than 5 t/ha. Alterations in N management may be required to realise the high yield potential of new varieties. Conventional RB209 recommendations are for N to be applied in two splits at the end of February/early March and end of March/early April. N is sometimes applied as early as late January/early February.

HGCA-funded work (Lunn *et al.*, 2001; 2003) demonstrated that yield is reduced by the development of an over-large canopy up to flowering. An optimum pod number of 7000 pods/m² is required to maximise seeds/m² (Figure 3.1; Berry and Spink, 2006). This may arise from too much early N, from early plant establishment or from mild autumn and winter conditions. The result of this is a thick flower layer reflecting much of the incoming light which causes few seeds to be set and a low yield potential (Berry and Spink, 2006). An optimum sized canopy can be achieved by adjusting the timing and rate of N to the size of the crop and the soil N supply. Nitrogen is a particularly valuable tool for avoiding the production of over-large canopies which may arise from uncontrollable factors such as mild autumn and winter conditions.

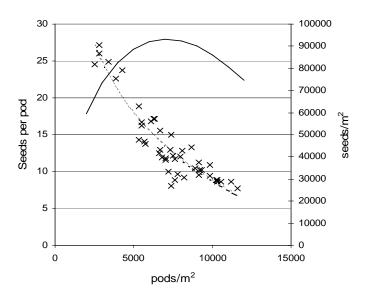


Figure 3.1. Seeds per pod plotted against pods per metre squared (crosses)
Relationship between seeds/m² and pods/m² (solid line). From Berry & Spink (2003).

Another problem with crops that develop an over-large canopy is that they may take up their N supply early then risk running out of N resulting in early canopy death. This is a problem for crops with a high yield potential because they require a long canopy duration to fill all the seeds. The advantage of later N applications has been demonstrated by Lunn *et al.* (2001) which showed that delaying applications by 2-3 weeks after early March increased the yield of crops receiving 200 kg N/ha or more by 0.25 t/ha.

Winter oilseed rape crops receive on average about 200 kg N/ha, and less than half of this is removed in the seed. This means that the winter following oilseed rape is the most nitrate leaching prone phase of many rotations (Johnson *et al.*, 1997). Approximately 80% of green house gas emissions are associated with the production of oilseed rape result from the manufacture and application of N fertiliser (Mortimer *et al.*, 2003). Therefore it is clear that any improvements in N management that improve its use efficiency will be valuable for reducing nitrate leaching and green house gases.

3.2 Aim and objectives

3.2.1 Project Aim

Develop nitrogen management strategies that help to realise the high yield potential of modern oilseed rape varieties.

3.2.1 Specific Objectives

- I. Understand the physiological mechanism by which a canopy management approach to N use increases yield.
- Understand how the canopy management approach may need adjusting for different types of crop.

4. Experimental design, materials and methods

4.1 Canopy Management approach

Previous work has demonstrated that oilseed rape must achieve an optimum green area index (GAI) of 3.5 units at flowering (Lunn *et al.*, 2001). Larger canopies set fewer seeds/m² and are more prone to lodging, whilst smaller canopies do not intercept all of the available light. It has been shown that the crop must take up 50 kg N/ha to build each unit of GAI (Lunn *et al.*, 2001), which means that the crop must take up 175 kg N/ha to achieve the optimum GAI of 3.5. It was assumed that any N that the crop had taken up by the end of winter remained in the crop until flowering and therefore contributed to the production of the optimum GAI. It was assumed that oilseed rape took up 100% of the soil mineral N measured in the soil in January/February and 60% of any fertiliser N applied (55% on shallow soils over chalk or limestone). These uptake efficiencies are similar to average figures that have been measured in wheat. The rate of crop N uptake was 3 kg N per day (Schjoerring *et al.*, 1995). It was expected that crops with a higher than average yield potential will require additional N which should be applied between yellow bud and mid-flowering.

In late January or early February, the amount of N in the soil and crop were measured and this was used to calculate how much fertiliser N was required for the crop to achieve a GAI of 3.5 using the assumptions described above.

Example: In February the amount of N in the soil was 50 kg N/ha and the amount of N in the crop was 50 kg N/ha. It is assumed that by flowering the crop will contain all of this soil and crop N (100 kg N/ha). This means it will be 75 kg N/ha short of the amount required for the optimum GAI. 125 kg of fertiliser N must be applied to make up this shortfall assuming 60% of the fertiliser N applied is taken up by the crop.

The amount of fertiliser N required to achieve the optimum sized canopy was applied at the 2nd conventional split timing at the start of stem extension (late March/early April). A small proportion of the N was applied at the 1st conventional split timing (late February/early March) when it was calculated that there would be insufficient time for the crop to take up all of the N required to achieve an optimum sized canopy by mid flowering if the first application was made at the 2nd conventional split timing. Additional N for high yield potential was applied at yellow bud to mid flowering.

4.2 Field experiments

4.2.1 Sites

Experiments were carried out in 2005/6, 2006/7 and 2007/8. Experiments were drilled at ADAS Boxworth in Cambridgeshire (Clay, Hanslope series), ADAS High Mowthorpe in N. Yorkshire (shallow silty clay loam over chalk, Andover series) and ADAS Rosemaund in Herefordshire (silty clay loam, Bromyard series). Site codes used in this report are as follows Boxworth (BX06, BX07 and BX08), High Mowthorpe (HM06, HM07, HM08), and Rosemaund (RM06, RM07, RM08).

4.2.2 Experimental factors and design

Four factors were investigated; variety, N rate, N timing and a growth regulatory fungicide Folicur. At each site the variety, N rate and N timing treatments were fully randomised within each of four replicate blocks, apart from BX06 and HM06 in which variety formed main plots in which the N rate and N timing were randomised. At each site Folicur was then applied across one half of each block. The position of the Folicur strip was randomised for each block. This type of design is a special case of a split plot design where the sub-plot treatments are not randomised separately for each whole plot, but are randomly allocated to strips of subplots across each block. This is usually called a strip design or a criss-cross design. Each plot measured 18m by 3.5m.

The two varieties used were Winner and the 'low biomass' variety Castille. Seven N rates were used (0, 60, 120, 180, 240, 300, 360 kg/ha). All N was applied as ammonium nitrate (34.5% N). All N rates, apart from the nil, were applied at either conventional or canopy managed timings. Conventional timings were for 50% of the N applied in late February/March and 50% applied at the start of stem extension (late March/early April). Canopy management timings were for all, or the majority, of the N required to achieve the optimum sized canopy to be applied at the 2nd conventional split timing (start of stem extension) and the remaining N was applied between yellow bud and mid-flowering. The Folicur treatment was applied at green bud. The rate of Folicur was dependent on the size of the crop canopy measured in February. Crops with a GAI of less than 1 received 0.5 I/ha and crops with a GAI of 1 or more received a rate of 1.0 I/ha.

4.2.3 Husbandry

All crops were sown at 90 seeds/m². Adequate Sulphur was ensured by applying 75 kg/ha SO₃ as Magnesium Sulphate (Kieserite) to all treatments at the same time as the first N split was applied to the conventional N treatments. Fungicides without growth regulatory activity were used to minimise disease and to help ensure that any effects of the Folicur treatment resulted from growth regulation rather than disease control. Pests were minimised using molluscicides and insecticides. Desiccants were not used apart from High Mowthorpe in 2008. See appendices 1, 2 and 3 for further site details.

4.3 Measurements

Assessments included the amount of mineral N in the soil, together with the GAI and N content of the crop, in February. At flowering, the crop height, light interception/reflection, GAI, biomass and crop N content were measured. At crop maturity the biomass and N content of the stem, pod walls and seeds were measured. Pod greenness and lodging were assessed at regular intervals. Many of the physiological measurements were carried out on a subset of the treatments. Yield was determined for all treatments using a small plot combine from an area of at least $30m^2$ and the moisture content and oil content of the seed was measured.

4.4 Calculations and Statistics

Analysis of variance procedures within Genstat (8.1) (www.genstat.com) were used to calculate whether treatments were significantly different. Linear plus exponential N response curves were fitted to the seed yield data for each treatment of the form

$$Y = A + BR^{N} + CN$$
 Equation 1

where Y is the seed yield (t/ha), A, B, C and R are constants. Each linear plus exponential function was fitted using a stepwise process within Genstat (8.1) involving the following steps: i) fitting a common curve to all fungicide treatments, ii) fitting separate parallel curves for each fungicide treatment, iii) fitting separate curves for each fungicide treatment by allowing parameters A, B and C all to vary, and iv) fitting separate curves for each fungicide treatments by allowing all parameters to vary. The sums of squares explained at each stage was calculated, and a test was made of the improvement in fit over the previous model. If there was no significant improvement between two stages, then the previous model was taken as the best description of the

data. In general, fitting at stage (ii) was most satisfactory and the economic N rate (N_{OPT}) was determined from the fitted linear plus exponential parameters as follows;

$$N_{OPT} = \frac{\left[\ln(k-C) - \ln(B(\ln R))\right]}{\ln R}$$
 Equation 2

where k is the breakeven price ratio between fertiliser N (p/kg) and grain (p/kg). A breakeven ratio of 2.5 was used in this study because this has previously been used as a standard for fertiliser recommendations (Anon., 2000). The yield at the optimum N rate (Y_{OPT}) was calculated from the fitted parameters using equation 1.

The gross margin over N costs was calculated by assuming a seed yield price of £230/t (9% moisture), ammonium nitrate containing 34.5% N costing £200/t (which were typical average prices during the project and these give a breakeven ratio of 2.5). The oil premium was calculated as 1.5% of the basic oilseed rape price for each percentage point that the oil content was above 40%. When the oil content was less than 40% the same formula was used to calculate the price penalty from the basic oilseed rape price of £230/t.

5. Results

5.1 Experiment Year 1 – 2005/6

5.1.1 Soil and crop N in February

Experiments were drilled at ADAS Boxworth (Cambridgeshire) on 8/9/05, ADAS High Mowthorpe (N. Yorkshire) on 28/8/05 and ADAS Rosemaund (Herefordshire) on 6/9/05. The soil mineral N and GAI of the experimental crops was measured in late January or early February. This showed that the crop N content and the soil mineral N of Winner and Castille were not significantly different. A summary of this information (Table 5.1) shows that the combined supply of N from the crop and soil in February was 123 kg N/ha at Boxworth, 93 kg N/ha at Rosemaund and 67 kg N/ha at High Mowthorpe.

Table 5.1. Fertiliser requirement for canopy managed treatments

	Boxworth	High Mowthorpe	Rosemaund
Feb SMN (kg/ha)	50	35	60
Feb GAI	1.40	0.57	0.63
SNS (kg/ha)	123	67	93
Fert N for GAI 3.5	90	180	140

SMN – soil mineral nitrogen

SNS – soil nitrogen supply - combined supply of nitrogen from the soil and crop

5.1.2 N treatments

The amount of fertiliser N required to achieve the optimum GAI of 3.5 by flowering was calculated at 90 kg/ha at Boxworth, 140 kg/ha at Rosemaund and 180 kg/ha at High Mowthorpe based on the measurements of soil and crop N. At Boxworth and Rosemaund, the first dose for the canopy managed treatment was applied at the 2nd conventional split timing. At High Mowthorpe it was estimated that the crop would not be able to take up all of the N required to acheve the optimum sized canopy by midflowering if the N applications were delayed until the 2nd conventional split timing. Therefore, 40 kg N/ha was applied at the 1st conventional split timing. After sufficient N had been applied to achieve the optimum GAI of 3.5 the remainder of the N was applied between yellow bud and early/mid flowering in late April/early May. The N applications in each split are described in Tables 5.2 to 5.4. The dates of the N applications and Folicur treatment are described in Table 5.5.

Table 5.2. Boxworth N applications (kg/ha)

N treatment	Management	1 st split	2 nd split	3 rd split	Total
1		0	0	0	0
2	Conventional	30	30	0	60
3	Conventional	60	60	0	120
4	Conventional	90	90	0	180
5	Conventional	120	120	0	240
6	Conventional	150	150	0	300
7	Conventional	180	180	0	360
8	Managed	0	60		60
9	Managed	0	90	30	120
10	Managed	0	90	90	180
11	Managed	0	90	150	240
12	Managed	0	90	210	300
13	Managed	0	90	270	360

Table 5.3. High Mowthorpe N applications (kg/ha)

N treatment	Management	1 st split	2 nd split	3 rd split	Total
1		0	0	0	0
2	Conventional	30	30	0	60
3	Conventional	60	60	0	120
4	Conventional	90	90	0	180
5	Conventional	120	120	0	240
6	Conventional	150	150	0	300
7	Conventional	180	180	0	360
8	Managed	40	20	0	60
9	Managed	40	80	0	120
10	Managed	40	140	0	180
11	Managed	40	140	60	240
12	Managed	40	140	120	300
13	Managed	40	140	180	360

Table 5.4. Rosemaund N applications (kg/ha)

N treatment	Management	1 st split	2 nd split	3 rd split	Total
1		0	0	0	0
2	Conventional	30	30	0	60
3	Conventional	60	60	0	120
4	Conventional	90	90	0	180
5	Conventional	120	120	0	240
6	Conventional	150	150	0	300
7	Conventional	180	180	0	360
8	Managed	0	60	0	60
9	Managed	0	120	0	120
10	Managed	0	140	40	180
11	Managed	0	140	100	240
12	Managed	0	140	160	300
13	Managed	0	140	220	360

Table 5.5. Timings of Nitrogen and Folicur treatments

	Boxworth	High Mowthorpe	Rosemaund
1 st N timing	27 February	22 March	10 March
2 nd N timing	4 April	12 April	12 April
3 rd N timing	5 May	25 April	25 April
Folicur timing	4 April	24 April	7 April
	(1.0 l/ha)	(0.5 l/ha)	(0.5 l/ha)

5.1.3 Seed yield

At Boxworth, all of the main treatment factors affected seed yield. Castille averaged 4.27 t/ha compared with 3.72 t/ha for Winner (P<0.01; Table 5.6). Increasing N rate significantly increased yield (P<0.01). The greatest difference occurred between the nil N and 60 kg N/ha treatments. Across all treatments, the Managed N timing treatment significantly increased yield over the Conventional N timing treatment from 3.99 t/ha to 4.21 t/ha (P<0.001). The N rate and Managed N treatments interacted (P = 0.086) because the Managed N timing produced a greater yield advantage over the Conventional N timing at higher rates of N. Averaged across all treatments, Folicur (1.0 l/ha) increased yield from 3.93 t/ha to 4.06 t/ha (P = 0.10).

At High Mowthorpe, across all treatments N rate increased yield from 1.92 t/ha at nil N to 3.59 t/ha at 360 kg N/ha (P<0.001), and Folicur (0.5 I/ha) increased yield by on average 0.26 t/ha (P<0.01; Table 5.7). There was a lower order interaction between

N rate and Folicur (P<0.05) because Folicur tended to increase yield more at the higher N rates. There was a weak interaction between Variety, N rate and N management (P=0.061). This occurred because the Managed timing tended to reduce the yield of Castille at low rates of N (60 to 180 kg/ha) but had little affect on the yield Winner grown at low N rates. At higher N rates the Managed timing either had no effect or increased the yield of both varieties.

At Rosemaund, Castille averaged 4.42 t/ha compared with 4.03 t/ha for Winner (P<0.001; Table 5.8). Increasing N rate significantly increased yield (P<0.001). Across all treatments N rate increased yield from 2.58 t/ha at nil N to 4.22 t/ha at 360 kg N/ha (P<0.001). Variety and N rate interacted (P<0.05). This interaction appeared to be caused by different sized yield increases between 60 and 120 kg/ha for the two varieties (Table 5.8). There was a weak interaction between Folicur and N management (P=0.072) because Folicur increased yield by 0.17 t/ha when the N was applied at Conventional timings but had no effect when the N was applied at Managed timings (Table 5.8). This effect was strongest for Winner.

Table 5.6. Boxworth seed yields (t/ha @ 9% mc)

Variety	N rate	No Fol	icur		Folicur (1.0 l/ha)			Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	3.18		3.18	2.97		2.97	3.08		3.08
Winner	60	3.65	3.64	3.64	4.01	3.55	3.78	3.83	3.59	3.71
Winner	120	3.33	3.85	3.59	3.91	4.17	4.04	3.62	4.01	3.82
Winner	180	3.55	3.71	3.63	3.71	3.86	3.79	3.63	3.79	3.71
Winner	240	3.56	4.18	3.87	3.84	4.20	4.02	3.70	4.19	3.95
Winner	300	3.36	4.01	3.69	3.86	4.09	3.97	3.61	4.05	3.83
Winner	360	3.80	4.44	4.12	3.54	3.99	3.76	3.67	4.21	3.94
Winner	Mean	3.54	3.97	3.68	3.81	3.98	3.76	3.68	3.97	3.72
Castille	0	3.51		3.51	3.70		3.70	3.60		3.60
Castille	60	4.11	3.89	4.00	3.97	3.84	3.91	4.04	3.87	3.96
Castille	120	4.26	4.18	4.22	4.34	4.61	4.47	4.30	4.39	4.34
Castille	180	4.05	4.54	4.29	4.16	4.82	4.49	4.10	4.68	4.39
Castille	240	4.38	4.36	4.37	4.72	4.68	4.70	4.55	4.52	4.53
Castille	300	4.18	4.72	4.45	4.35	4.57	4.46	4.26	4.65	4.46
Castille	360	4.41	4.52	4.46	4.73	4.73	4.73	4.57	4.62	4.60
Castille	Mean	4.23	4.37	4.19	4.38	4.54	4.35	4.30	4.46	4.27
Win+Cas	0	3.35		3.35	3.33		3.33	3.34		3.34
Win+Cas	60	3.88	3.77	3.82	3.99	3.70	3.84	3.93	3.73	3.83
Win+Cas	120	3.80	4.02	3.91	4.12	4.39	4.26	3.96	4.20	4.08
Win+Cas	180	3.80	4.13	3.96	3.93	4.34	4.14	3.87	4.23	4.05
Win+Cas	240	3.97	4.27	4.12	4.28	4.44	4.36	4.12	4.35	4.24
Win+Cas	300	3.77	4.37	4.07	4.10	4.33	4.22	3.94	4.35	4.14
Win+Cas	360	4.10	4.48	4.29	4.14	4.36	4.25	4.12	4.42	4.27
Win+Cas	Mean	3.89	4.17	3.93	4.09	4.26	4.06	3.99	4.21	3.99
Treatment			df	SED	P-Valu	е				
Folicur			3	0.602	0.10					
Variety			3	0.707	< 0.01					
Folicur x V	arietv		6	0.093	NS					
N rate			72	0.154	< 0.01					
N Manager	nent		72	0.154	< 0.00	1				
Var x Nrate			45	0.158	NS					
Var x Man			10	0.096	NS					
Nrate x Ma	ın		72	0.154	0.081					
Var x Nrate			68	0.221	NS					
Fol x Nrate			113	0.203	NS					
Fol x Man			137	0.153	NS					
Fol x Var x	Nrate		86	0.206	NS					
Fol x Var x			19	0.126	NS					
Fol x Nrate			113	0.213	NS					
Fol x Var x		Man	130	0.287	NS					

Table 5.7. High Mowthorpe seed yields (t/ha @ 9% mc)

Variety	N rate	No Fol				(0.5 1/1		Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Minnor	0	1 25		1 05	1 1 1		1 1 1	1 10		1 10
Winner	0	1.25	1.07	1.25	1.14	0.40	1.14	1.19	0.00	1.19
Winner	60	2.32	1.86	2.09	2.65	2.18	2.42	2.49	2.02	2.25
Winner	120	3.05	3.39	3.22	3.09	3.21	3.15	3.07	3.3	3.18
Winner	180	3.55	3.35	3.45	3.9	3.59	3.74	3.72	3.47	3.6
Winner	240	3.56	3.53	3.55	3.62	4.11	3.87	3.59	3.82	3.71
Winner	300	3.85	3.74	3.79	4.07	4.45	4.26	3.96	4.09	4.03
Winner	360	3.94	3.92	3.93	4.22	4.20	4.21	4.08	4.06	4.07
Winner	Mean	3.38	3.30	3.04	3.59	3.62	3.26	3.49	3.46	3.15
Castille	0	2.56		2.56	2.73		2.73	2.64		2.64
Castille	60	3.22	3.14	3.18	3.38	3.50	3.44	3.30	3.32	3.31
Castille	120	4.34	3.45	3.89	4.46	3.72	4.09	4.40	3.59	3.99
Castille	180	4.56	4.37	4.47	4.83	4.40	4.61	4.69	4.39	4.54
Castille	240	4.45	4.33	4.39	4.86	4.53	4.70	4.65	4.43	4.54
Castille	300	4.02	4.31	4.17	4.89	4.89	4.89	4.45	4.60	4.53
Castille	360	4.45	4.54	4.49	4.65	5.10	4.87	4.55	4.82	4.68
								4.34	4.19	4.03
Castille	Mean	4.17	4.02	3.88	4.51	4.36	4.19	4.34	4.19	4.03
Win+Cas	0	1.90		1.90	1.93		1.93	1.92		1.92
Win+Cas	60	2.77	2.50	2.63	3.02	2.84	2.93	2.89	2.67	2.78
Win+Cas	120	3.69	3.42	3.56	3.77	3.47	3.62	3.73	3.44	3.59
Win+Cas	180	4.05	3.86	3.96	4.36	3.99	4.18	4.21	3.93	4.07
Win+Cas	240	4.00	3.93	3.97	4.24	4.32	4.28	4.12	4.13	4.13
Win+Cas	300	3.93	4.03	3.98	4.48	4.67	4.58	4.21	4.35	4.28
Win+Cas	360	4.19	4.23	4.21	4.43	4.65	4.54	4.31	4.44	4.38
Win+Cas	Mean	3.77	3.66	3.46	4.05	3.99	3.72	3.91	3.83	3.59
Treatment			df	SED	P-Valu	е				
Folicur			3	0.027	<0.01					
Variety			3	0.363	NS					
Folicur x V	arioty		6	0.363	NS					
	ariety					1				
N rate			72	0.187	< 0.00	I				
N Manager			72	0.187	NS					
Var x Nrate	е		45	0.402	NS					
Var x Man			10	0.371	NS					
Nrate x Ma			72	0.187	NS					
Var x Nrate	e x Man		68	0.443	0.061					
Fol x Nrate	9		113	0.148	< 0.05					
Fol x Man			137	0.082	NS					
Fol x Var x	Nrate		86	0.413	NS					
Fol x Var x			19	0.375	NS					
Fol x Nrate			113	0.211	NS					
Fol x Var x		Man	130	0.465	NS					
i Oi A Vai A	I WI G LE X	iviaii	130	0.403	IVO					

Table 5.8. Rosemaund seed yields (t/ha @ 9% mc)

Variety	N rate	No Fol	No Folicur (0.5 I/ha) C		Conv	CM	Grand			
	kg/ha	Conv	CM	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Winner	0	2.23		2.23	2.55		2.55	2.39		2.39
Winner	60	3.47	3.51	3.49	3.37	3.59	3.48	3.42	3.55	3.49
Winner	120	3.88	4.16	4.02	4.00	3.99	4.00	3.94	4.08	4.01
Winner	180	3.87	4.19	4.03	4.38	4.29	4.34	4.13	4.24	4.18
Winner	240	4.47	4.78	4.63	4.77	4.48	4.62	4.62	4.63	4.62
Winner	300	4.63	4.74	4.69	4.64	4.91	4.78	4.64	4.83	4.73
Winner	360	4.67	4.66	4.66	5.02	4.65	4.84	4.85	4.66	4.75
Winner	Mean	4.17	4.34	3.96	4.36	4.32	4.09	4.27	4.33	4.03
Castille	0	2.80		2.80	2.72		2.72	2.76		2.76
Castille	60	3.51	3.31	3.41	3.86	3.83	3.85	3.69	3.57	3.63
Castille	120	4.39	4.66	4.52	4.24	4.51	4.38	4.32	4.59	4.45
Castille	180	4.79	5.04	4.92	4.90	4.72	4.81	4.85	4.88	4.86
Castille	240	4.85	4.98	4.92	5.05	5.02	5.03	4.95	5.00	4.98
Castille	300	5.07	4.97	5.02	5.19	5.05	5.12	5.13	5.01	5.07
Castille	360	5.28	5.02	5.15	5.33	5.01	5.17	5.30	5.01	5.16
Castille	Mean	4.65	4.66	4.39	4.76	4.69	4.44	4.71	4.68	4.42
Win+Cas	0	2.51		2.51	2.64		2.64	2.58		2.58
Win+Cas	60	3.49	3.41	3.45	3.62	3.71	3.66	3.55	3.56	3.56
Win+Cas	120	4.14	4.41	4.27	4.12	4.25	4.19	4.13	4.33	4.23
Win+Cas	180	4.33	4.61	4.47	4.64	4.50	4.57	4.49	4.56	4.52
Win+Cas	240	4.66	4.88	4.77	4.91	4.75	4.83	4.78	4.82	4.80
Win+Cas	300	4.85	4.85	4.85	4.92	4.98	4.95	4.88	4.92	4.90
Win+Cas	360	4.97	4.84	4.91	5.18	4.83	5.00	5.08	4.84	4.96
Win+Cas	Mean	4.41	4.50	4.18	4.57	4.50	4.26	4.49	4.51	4.22
Treatment			df	SED	P-Valu	е				
Folicur			3	0.073	NS	_				
Variety			75	0.044	< 0.00	1				
Folicur x V	ariety		6	0.085	NS					
N rate			75	0.111	< 0.00	1				
N Manager			75	0.111	NS					
Var x Nrat	е		75	0.157	< 0.05					
Var x Man			75	0.157	NS					
Nrate x Ma	an		75	0.111	NS					
Var x Nrat	e x Man		75	0.157	NS					
Fol x Nrate	9		24	0.125	NS					
Fol x Man			6	0.087	0.072					
Fol x Var x	Nrate		60	0.166	NS					
Fol x Var x	Man		14	0.107	NS					
Fol x Nrate	e x Man		60	0.116	NS					
Folly Var v	Nrate x	Man	112	0.228	NS					

5.1.4 Oil content

At Boxworth both N rate and N management significantly affected oil content (P<0.001; Table 5.9). Furthermore there was a significant interaction between N rate and N management (P<0.001). Delaying N applications reduced oil content at 120 and 240 kg N/ha and had no effect at 360 kg N/ha. It should be noted that at this site the late N was delayed until very late (mid flowering), which was later than in any of the other experiments. Variety did not significantly affect oil content. A linear regression for N rate against oil content which was grouped for N management accounted for 51% of the variation (P<0.001). Altering the intercept for the N management treatments increased the proportion of variation accounted for to 61% (P<0.001). Altering the slope or using different shaped curves did not improve the fit. Oil content decreased by 2.67 percentage points for each 100 kg/ha increase in N rate from a starting oil content of 44.2% at nil N for Conventional N timings and 41.0% at nil N for Managed N timings.

Table 5.9. Boxworth Oil contents (% dry matter)

N Rate	Winne	er		Castille	9		Conv	CM	Grand
Kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
									_
0	43.2		43.2	42.5		42.5	42.9		42.9
120	43.0	34.3	38.7	40.9	35.9	38.4	42.0	35.1	38.6
240	41.3	32.7	37.0	41.1	33.8	37.5	41.2	33.3	37.3
360	32.0	33.3	32.7	31.1	34.1	32.6	31.6	33.7	32.7
Mean	38.8	33.4	37.9	37.7	34.6	36.2	38.3	33.5	35.9
Treatme	nt		df	SED	P Value	9			
Variety			3	1.17	NS				
Nitrogen			36	0.84	< 0.00	1			
N manag	gement		36	0.69	< 0.00	1			
Variety x	Nitrog	en	36	1.06	NS				
Variety x	(Manaç	gement	28	0.81	NS				
Nitrogen	Х	•	36	1.19	< 0.00	1			
Managen	nent								
Var x N x	x Man		36	1.68	NS				

Without Folicur

At High Mowthorpe, increasing N rate from nil to 360 kg N/ha decreased oil content from 42.5% to 40.3% (P<0.001; Table 5.10). Neither variety nor N management significantly affected oil content. A linear regression for N rate against oil content accounted for just 19% of the variation (P<0.001). Altering the intercept or slope for the different treatment combinations did not significantly increase the amount of variation accounted for, nor did the use of different shaped curves. On average oil

content decreased by 0.67 percentage points for each 100 kg/ha increase in N rate from a starting oil content of 42.5% at nil N.

Table 5.10. High Mowthorpe Oil contents (% dry matter)

							Τ		
N Rate	Winne	er		Castille	•		Conv	CM	Grand
_Kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
0	42.4		42.4	42.6		42.6	42.5		42.5
120	42.5	42.0	42.2	40.4	43.8	42.1	41.4	42.9	42.2
240	39.7	41.5	40.6	40.3	40.3	40.3	40.0	40.9	40.4
360	40.9	40.9	40.9	40.0	39.6	39.8	40.4	40.3	40.3
Mean	41.0	41.5	41.5	40.2	41.2	41.2	40.6	41.4	41.4
Treatme	nt		df	SED	P Value)			
Variety			3	0.341	NS				
Nitrogen			36	0.974	< 0.05				
N manag	gement		36	0.974	NS				
Variety x	Nitrog	en	36	1.320	NS				
Variety x	Manag	gement	28	1.320	NS				
Nitrogen	Х	-	36	0.974	NS				
Manager	nent								
Var x N x			36	1.320	NS				

Without Folicur

At Rosemaund, increasing N rate from nil to 360 kg N/ha decreased oil content from 47.3% to 43.1% (P<0.001; Table 5.11). A linear regression for N rate against oil content accounted for 77% of the variation (P<0.001). Altering the intercept or slope for the different treatment combinations did not significantly increase the amount of variation accounted for, nor did the use of different shaped curves. Oil content decreased by 1.19 percentage points for each 100 kg/ha increase in N rate from a starting oil content of 47.0% at nil N.

Table 5.11. Rosemaund Oil contents (% dry matter)

N Doto	Minne			Contillo			Conv	CM	Crond
N Rate	Winne			Castille			Conv	CM	Grand
Kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
0	47.3		47.3	47.3		47.3	47.3		47.3
120	46.8	44.7	45.7	45.0	44.7	44.8	45.9	44.7	45.3
240	44.0	44.0	44.0	43.9	43.6	43.7	44.0	43.8	43.9
360	43.1	43.3	43.2	42.9	43.0	42.9	43.0	43.1	43.1
Mean	44.6	44.0	45.1	43.9	43.8	44.7	44.3	43.9	44.9
Treatme	nt		df	SED	P Value	è			
Variety			3	0.262	NS				
Nitrogen			36	0.312	< 0.001				
N manag	gement		36	0.208	0.051				
Variety x	Nitrog	en	36	0.402	NS				
Variety >	k Manaç	gement	28	0.344	NS				
Nitrogen	Х	-	36	0.360	< 0.05				
Manager									
Var x N			36	0.540	NS				

Without Folicur

5.1.5 Optimum N rates

At Boxworth, regression analysis showed that fitting parallel curves for each treatment combination accounted for the most variation between N rate and yield (44%, P<0.001). The economically optimum N rate before taking account of oil premiums was 100 kg N/ha for all treatments and 70 kg N/ha after taking account of the oil content. At 70 kg N/ha the Managed N timing increased yield of Winner by 0.36 t/ha and increased the yield of Castille by 0.08 t/ha. At 70 kg N/ha with Conventional N timings Folicur increased the yield of Winner by 0.20 t/ha and increased the yield of Castille by 0.15 t/ha (Table 5.12). At optimum N rate with Managed N timings Folicur increased the yield of Castille by 0.19 t/ha and had no effect on Winner.

At High Mowthorpe regression analysis showed that fitting parallel curves for each treatment combination accounted for the most variation between N rate and yield (73%, P<0.001). The economically optimum N rate before taking account of oil premiums was 249 kg N/ha for all treatments, and this decreased to 239 kg N/ha after taking account the oil content. At 239 kg N/ha the Managed N timing did not affect the yield of Winner and reduced the yield of Castille by 0.13 t/ha. At optimum N rate Folicur increased the yield of Winner and Castille with Conventional or Managed N timings by 0.27 to 0.31 t/ha.

At Rosemaund regression analysis showed that fitting parallel curves for each treatment combination accounted for the most variation between N rate and yield (83%, P<0.001). The economically optimum N rate before taking account of oil premiums was 246 kg N/ha for all treatments, which decreased to 224 kg N/ha after accounting for oil content. At 224 kg N/ha rate the Managed N timing increased the yield of Winner by 0.15 t/ha and had no effect on the yield of Castille. At the optimum N rate with Conventional N timings Folicur increased the yield of Winner by 0.22 t/ha and had no effect on the yield of Castille. At optimum N rate with Managed N timings Folicur had no effect on the yield of Winner or Castille.

Table 5.12. Optimum N rate and yields at N opt.

	Boxworth	High Mowthorpe	Rosemaund
Economically optimum N rate (kg/ha)	70	239	224
Winner Conventional N timings	3.40	3.69	4.40
Winner Managed N timings	3.76	3.62	4.55
Winner Conventional N timings with Folicur	3.60	3.86	4.62
Winner Managed N timings with Folicur	3.74	3.89	4.58
Castille Conventional N timings	4.04	4.56	4.90
Castille Managed N timings	4.12	4.43	4.91
Castille Conventional N timings with Folicur	4.19	4.84	4.99
Castille Managed N timings with Folicur	4.31	4.74	4.92

5.1.6 Crop growth before stem extension

Crop assessments carried out before any N applications in February showed that the GAI, dry weight, tissue N concentration and N content of the crops did not differ between Winner and Castille at the 5% level of significance (Table 5.13). At Boxworth there was a trend for Winner to have a greater GAI, tissue N concentration and crop N content (P<0.01; Table 5.13). Regression analysis on the plot data for both varieties across all sites showed that a single linear best fit line accounted for 88% of the variation between GAI and the crop N content (Figure 5.1). This demonstrates that the canopy nitrogen requirement observed in previous studies of 50 kg per unit of GAI also holds for the modern high biomass variety Winner and low biomass variety Castille.

Table 5.13. February measurements.

				_		. 1	_
В١	n'	×۱	Λ/	റ	rт	r	٦

DOXWOLLI				
	GAI	Dry matter	N content	Crop N
		(t/ha)	(% of dry	(kg/ha)
			matter)	
Winner	1.54	1.99	4.11	82.1
Castille	1.25	1.74	3.66	63.1
Mean	1.40	1.86	3.89	72.6
SED (df)	0.123	0.170	0.174	7.99
P-Value	0.099	NS	0.079	0.098

High	Mowt	horpe
------	------	-------

19				
	GAI	Dry matter	N content	Crop N
		(t/ha)	(% of dry	(kg/ha)
			matter)	
Winner	0.58	0.69	5.24	31.9
Castille	0.56	0.69	4.75	33.1
Mean	0.57	0.69	4.99	32.5
SED (df)	0.372	0.384	0.576	15.69
P-Value	NS	NS	NS	NS

Rosemaund

	GAI	Dry	N content	Crop N
		matter	(% of dry	(kg/ha)
		(t/ha)	matter)	
Winner	0.63	0.81	3.42	28.1
Castille	0.62	0.86	4.47	37.1
Mean	0.63	0.84	3.94	32.6
SED (df)	0.080	0.062	1.15	8.28
P-Value	NS	NS	NS	NS

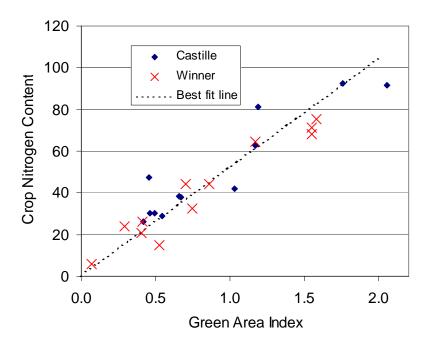


Figure 5.1. Relationship between green area index and crop nitrogen content measured in February at ADAS Boxworth, High Mowthorpe and Rosemaund. Best fit line: y = 0.019x; $R^2 = 0.88$; P < 0.001).

5.1.7 GAI at end of flowering

Measurements of GAI were taken at the end of flowering on nitrogen Treatment 3 (120 kg N/ha) to assess whether the GAI achieved was similar to that predicted using the assumptions used for canopy management. GAI for each site was predicted from the soil and crop N measured in February and the amount of fertiliser N applied (120 kg/ha) (Table 5.14). The measurements of GAI at the end of flowering show that the predicted values of GAI were quite accurate. The GAI measurements were made at the end of May when no flowers were left. At this time the pod area represented about one third of the total GAI. Varietal differences were not observed for GAI (Tables 5.15 to 5.17). It is also interesting to note that there were no differences in total or stem biomass between Winner and Castille at this stage of development (Tables 5.15 to 5.17).

Table 5.14. Comparison of predicted and measured GAIs for Treatment 3.

	Boxworth	High Mowthorpe	Rosemaund
Predicted GAI	3.90	2.78	3.30
*Measured GAI	4.06	3.21	3.10

Mean of Winner and Castille

Table 5.15. Boxworth. End of flowering measurements on Treatment 3 (30th May).

	Green area indices				Dry weig	ght (t/ha)			
	Leaf	Stem	Pod	Total	Leaf	Stem	Pod	Total	Crop N (kg/ha)
Winner	1.52	1.05	1.14	3.71	0.88	6.07	3.71	10.76	264
Castille	1.73	1.25	1.42	4.40	1.02	6.71	4.81	12.74	330
Mean	1.62	1.15	1.28	4.05	0.95	6.39	4.26	11.75	297
SED (df)	0.501	0.243	0.223	0.956	0.296	0.111	0.700	0.203	49.4
P-Value	NS	NS	NS	NS	NS	NS	NS	NS	NS

Table 5.16. High Mowthorpe. End of flowering measurements on Treatment 3 (13 June).

	Green area indices			Dry weight (t/ha)					
	Leaf	Stem	Pod	Total	Leaf	Stem	Pod	Total	Crop N (kg/ha)
Winner	0.78	0.99	1.17	2.93	0.59	4.33	3.32	8.24	125
Castille	0.80	1.12	1.58	3.49	0.63	4.67	4.25	9.55	156
Mean	0.79	1.05	1.37	3.21	0.61	4.50	3.78	8.89	140
SED (df)	0.175	0.213	0.054	0.392	0.135	0.583	0.420	1.042	26.4
P-Value	NS	NS	0.078	NS	NS	NS	NS	NS	NS

Table 5.17. Rosemaund. End of flowering measurements on Treatment 3 (30th May).

	Green area indices			Dry weight (t/ha)					
	Leaf	Stem	Pod	Total	Leaf	Stem	Pod	Total	Crop N (kg/ha)
Winner	1.88	0.73	1.04	3.65	0.87	4.41	3.16	8.43	154
Castille	1.41	0.59	0.54	2.55	0.66	3.99	2.53	7.18	127
Mean	1.65	0.66	0.79	3.10	0.76	4.20	2.85	7.81	140
SED (df)	0.386	0.119	0.217	0.436	0.048	0.830	0.391	0.112	20.1
P-Value	NS	NS	NS	0.085	< 0.05	NS	NS	NS	NS

5.1.8 Light interception at the end of flowering

At Boxworth, the crop canopy intercepted on average 97% of the incoming light (Table 5.18) of which 84% was intercepted by the pod layer (Table 5.19). Increasing the N rate applied at conventional timings from 120 kg/ha to 360 kg/ha increased the percentage of light intercepted by the whole canopy from 96.3% to 97.7% (P<0.01) and increased the light intercepted by the pod layer from 83.0% to 85.3% (NS). On average the canopy of Castille intercepted slightly more light than the canopy of Winner (P = 0.054). Folicur did not affect the amount of light intercepted.

At High Mowthorpe, the crop canopy intercepted on average 96% of the incoming light (Table 5.20) of which 84% was intercepted by the pod layer (Table 5.21). Increasing the N rate applied at conventional timings from 120 kg/ha to 360 kg/ha increased the percentage of light intercepted by the whole canopy from 94.4% to 97.7% (P<0.001) and increased the light intercepted by the pod layer from 81.0 to 86.2% (P<0.01). Neither variety nor Folicur affected the amount of light intercepted.

At Rosemaund, the crop canopy intercepted on average 88% of the incoming light (Table 5.22) of which almost all was intercepted by the pod layer (Table 5.23). Increasing the N rate applied at conventional timings from 120 kg/ha to 360 kg/ha increased the percentage of light intercepted by the whole canopy from 86.6% to 89.8% (NS) and increased the light intercepted by the pod layer from 86.4 to 89.3% (P<0.05). Neither variety nor Folicur affected the amount of light intercepted.

Table 5.18. Boxworth proportion of light intercepted by pod layer (31 May 2006)

N Rate	Winner			Castille			Nil	Folicur	Grand
Kg/ha	Nil	Folicur	Mean	Nil	Folicur	Mean	Mean	Mean	Mean
120	83.4	82.7	83.0	82.6	83.3	83.0	83.0	83.0	83.0
360	86.6	84.3	85.5	84.5	85.8	85.1	85.6	85.0	85.3
Mean	85.0	83.5	84.2	83.5	84.5	84.0	84.3	84.0	84.1
Treatment			df	SED	P Value				
Variety			2	1.19	NS				
N Rate			12	1.41	NS				
Folicur			12	1.41	NS				
Variety x N	Rate		9	1.85	NS				
Variety x F	olicur		9	1.85	NS				
N Rate x Fo	olicur		12	1.99	NS				
Variety x F	olicur x N R	ate	14	2.71	NS				

Table 5.19. Boxworth proportion of light intercepted by whole canopy (31 May 2006)

N Rate	Winner			Castille			Nil	Folicur	Grand
Kg/ha	Nil	Folicur	Mean	Nil	Folicur	Mean	Mean	Mean	Mean
120	95.3	96.7	96.0	96.6	96.5	96.5	95.9	96.6	96.3
360	97.1	97.5	97.3	97.9	98.2	98.0	97.5	97.8	97.7
Mean	96.2	97.1	96.6	97.2	97.3	97.3	96.7	97.2	97.0
Treatment			df	SED	P Value				
Variety			2	0.155	0.054				
N Rate			12	0.452	< 0.01				
Folicur			12	0.452	NS				
Variety x N	N Rate		9	0.478	NS				
Variety x F	olicur		9	0.478	NS				
N Rate x F	olicur		12	0.639	NS				
Variety x F	olicur x N R	ate	14	0.798	NS				

Table 5.20. High Mowthorpe proportion of light intercepted by pod layer (14 June 2006)

N Rate	Winner			Castille			Nil	Folicur	Grand
Kg/ha	Nil	Folicur	Mean	Nil	Folicur	Mean	Mean	Mean	Mean
120	0.794	0.791	0.793	0.842	0.814	0.828	0.818	0.802	0.810
360	0.865	0.861	0.863	0.873	0.848	0.860	0.869	0.855	0.862
Mean	0.829	0.826	0.828	0.857	0.831	0.844	0.843	0.829	0.836
Treatment			df	SED	P Value				
Variety			2	0.0200	NS				
N Rate			12	0.0167	< 0.01				
Folicur			12	0.0167	NS				
Variety x N	Rate		9	0.0261	NS				
Variety x F	olicur		9	0.0261	NS				
N Rate x Fo	olicur		12	0.0236	NS				
Variety x F	olicur x N R	ate	14	0.0351	NS				

Table 5.21. High Mowthorpe proportion of light intercepted by whole canopy (14 June 2006)

N Rate	Winner			Castille			Nil	Folicur	Grand
Kg/ha	Nil	Folicur	Mean	Nil	Folicur	Mean	Mean	Mean	Mean
120	0.947	0.944	0.946	0.932	0.947	0.939	0.940	0.945	0.943
360	0.984	0.974	0.979	0.969	0.979	0.974	0.977	0.977	0.977
Mean	0.966	0.959	0.963	0.950	0.963	0.957	0.958	0.961	0.960
Treatment			df	SED	P Value				
Variety			2	0.0108	NS				
N Rate			12	0.0066	< 0.001				
Folicur			12	0.0066	NS				
Variety x N	N Rate		9	0.0126	NS				
Variety x F	olicur		9	0.0126	NS				
N Rate x F	olicur		12	0.0093	NS				
Variety x F	Folicur x N R	ate	14	0.0156	NS				

Table 5.22. Rosemaund proportion of light intercepted by pod layer (30 May 2006)

N Rate	Winner			Castille			Nil	Folicur	Grand
Kg/ha	Nil	Folicur	Mean	Nil	Folicur	Mean	Mean	Mean	Mean
120	0.848	0.866	0.857	0.855	0.887	0.871	0.851	0.877	0.864
360	0.911	0.906	0.908	0.865	0.896	0.880	0.888	0.901	0.894
Mean	0.879	0.886	0.883	0.860	0.892	0.876	0.869	0.889	0.879
Treatment			df	SED	P Value				
Variety			14	0.0129	NS				
N Rate			14	0.0129	< 0.05				
Folicur			14	0.0129	NS				
Variety x N	Rate		14	0.0182	NS				
Variety x F	olicur		14	0.0182	NS				
N Rate x Fo	olicur		14	0.0182	NS				
Variety x F	olicur x N R	ate	14	0.0258	NS				

Table 5.23. Rosemaund proportion of light intercepted by whole canopy (30 May 2006)

N Rate	Winner			Castille			Nil	Folicur	Grand
Kg/ha	Nil	Folicur	Mean	Nil	Folicur	Mean	Mean	Mean	Mean
120	0.884	0.839	0.861	0.894	0.847	0.870	0.889	0.843	0.866
360	0.929	0.920	0.925	0.863	0.879	0.871	0.896	0.900	0.898
Mean	0.906	0.880	0.893	0.879	0.863	0.871	0.892	0.871	0.882
Treatment			df	SED	P Value				
Variety			14	0.0199	NS				
N Rate			14	0.0199	NS				
Folicur			14	0.0199	NS				
Variety x N	Rate		14	0.0281	NS				
Variety x Fo	olicur		14	0.0281	NS				
N Rate x Fo	olicur		14	0.0281	NS				
Variety x Fo	olicur x N R	ate	14	0.0397	NS				

5.1.9 Depth of pod layer

Folicur reduced the depth of the pod layer from 70.7 cm to 67.7 cm at Boxworth (Table 5.24), from 59.3 cm to 57.9 cm at High Mowthorpe (Table 5.25) and from 67 cm to 62 cm at Rosemaund (Table 5.26). However none of these effects were statistically significant. There was no evidence that Folicur reduced pod depth more for Winner than for Castille. Winner tended to have a deeper pod layer than Castille, but again this effect was not statistically significant.

At Rosemaund additional measurements were carried out of the length of the stem from the ground to the base of the pod layer (Table 5.27) and of the overall crop height (Table 5.28). The stem length of Castille was 7 cm shorter than Winner (P<0.05). Folicur (0.5 I/ha) shortened the stems by 4 cm (NS). The overall crop height of Winner was 164 cm compared with 155 cm for Castille (P<0.05). Folicur reduced the overall crop height from 164 cm to 154 cm (P<0.05). Applying N at conventional timings at 120 kg/ha or 360 kg/ha did not affect the stem length or overall crop height.

Table 5.24. Boxworth depth of pod layer (cm) (31st May 2006)

N Rate	Winner			Castille			Nil	Folicur	Grand
Kg/ha	Nil	Folicur	Mean	Nil	Folicur	Mean	Mean	Mean	Mean
120	72.8	70.0	71.4	67.8	63.9	65.8	70.3	66.9	68.6
360	75.0	75.0	71.7	67.2	64.4	65.8	71.1	66.4	68.8
Mean	73.9	69.2	71.5	67.5	64.2	65.8	70.7	66.7	68.7
		·							
Treatment			df	SED	P Value				
Variety			2	5.28	NS				
N Rate			12	2.77	NS				
Folicur			12	2.77	NS				
Variety x N	l Rate		9	5.96	NS				
Variety x F	olicur		9	5.96	NS				
N Rate x F			12	3.92	NS				
Variety x F	olicur x N Ra	ate	14	7.13	NS				

Table 5.25. High Mowthorpe depth of pod layer (cm) (14 June 2006)

N Rate	Winner			Castille			Nil	Folicur	Grand
Kg/ha	Nil	Folicur	Mean	Nil	Folicur	Mean	Mean	Mean	Mean
120	62.6	60.8	61.7	56.6	56.4	56.5	59.6	58.6	59.1
360	59.4	57.1	58.3	58.4	57.1	57.8	58.9	57.1	58.0
Mean	61.0	58.9	60.0	57.5	56.8	57.1	59.3	57.9	58.6
Treatment			df	SED	P Value				
Variety			2	4.88	NS				
N Rate			12	2.62	NS				
Folicur			12	2.62	NS				
Variety x N	l Rate		9	5.54	NS				
Variety x F	olicur		9	5.54	NS				
N Rate x Fo	olicur		12	3.10	NS				
Variety x F	olicur x N R	ate	14	6.66	NS				

Table 5.26. Rosemaund depth of pod layer (cm) (30 May 2006)

N Rate	Winner			Castille			Nil	Folicur	Grand
Kg/ha	Nil	Folicur	Mean	Nil	Folicur	Mean	Mean	Mean	Mean
120	68	62	65	70	60	65	69	61	65
360	63	66	65	67	58	63	65	62	64
Mean	66	64	65	69	59	64	67	62	64
Treatment			df	SED	P Value				
Variety			14	3.60	NS				
N Rate			14	3.60	NS				
Folicur			14	3.60	NS				
Variety x N	l Rate		14	5.09	NS				
Variety x F			14	5.09	NS				
N Rate x F			14	5.09	NS				
Variety x F	olicur x N R	ate	14	7.21	NS				

Table 5.27. Rosemaund stem length (cm) (30 May 2006)

N Rate	Winner			Castille			Nil	Folicur	Grand
Kg/ha	Nil	Folicur	Mean	Nil	Folicur	Mean	Mean	Mean	Mean
120	102	95	99	93	86	90	98	91	94
360	102	98	100	95	92	94	99	95	97
Mean	102	97	99	94	89	92	98	93	95
_									
Treatment			df	SED	P Value				
Variety			14	3.29	< 0.05				
N Rate			14	3.29	NS				
Folicur			14	3.29	NS				
Variety x N	Rate		14	4.66	NS				
Variety x F	olicur		14	4.66	NS				
N Rate x Fo	olicur		14	4.66	NS				
Variety x F	olicur x N R	ate	14	6.59	NS				

Table 5.28. Rosemaund Overall crop height (cm) (30 May 2006)

N Rate	Winner			Castille			Nil	Folicur	Grand
Kg/ha	Nil	Folicur	Mean	Nil	Folicur	Mean	Mean	Mean	Mean
120	170	157	164	163	146	155	167	152	159
360	165	164	165	159	150	155	162	157	160
Mean	168	161	164	161	148	155	164	154	159
Treatmen	t		df	SED	P Value				
Variety			14	3.49	< 0.05				
N Rate			14	3.49	NS				
Folicur			14	3.49	< 0.05				
Variety x	N Rate		14	4.94	NS				
Variety x			14	4.94	NS				
N Rate x F			14	4.94	NS				
Variety x	Folicur x N R	ate	14	6.98	NS				

5.1.10 Lodging

At Boxworth, lodging was observed in the Winner treatments from the 9th June (early seed filling) onwards and no lodging was observed in the Castille treatments. Throughout the seed filling period lodging was significantly increased in Winner by increasing N rate. For example on 30th June the nil N rate treatments had 6% area lodged and the 240 kg N/ha treatments had 51% area lodged (Table 5.29; P<0.01). Applying N at Managed timings also reduced lodging. This effect was most significant during late seed filling. On the 12th July the Managed N treatments averaged 35% area lodged compared with 53% for the Conventional N treatments (Table 5.30; P<0.05).

At High Mowthorpe, only leaning of the upper half of the canopy was observed. This is recognised as less serious than lodging in which the lower half of the stems are either severely bent or buckled. Castille had significantly less leaning than Winner between the 10th and 31st of July (Tables 5.31 to 5.34). On the 31st July, the Winner treatments averaged 25% area lodged compared with 16% area lodged for Castille (P<0.01; Table 5.34). Neither N rate nor N management affected the amount of leaning.

At Rosemaund, lodging was observed in Winner and none in Castille at harvest. Applying N at Managed timings reduced the percentage area lodged across all N treatments in Winner from 23% to 8% (Table 5.35).

Table 5.29. Boxworth percentage area lodged for Winner

N Rate	9 th June	!		23 June	<u> </u>		30 June	<u> </u>	
Kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
0			8			5			6
120	32	9	20	35	16	26	39	20	29
180	33	28	30	33	35	34	36	36	36
240	44	26	35	58	43	50	61	40	51
Mean	36	21	23	42	31	29	45	32	31
Treatment	df	SED	P Value		SED	P Value		SED	P Value
N Rate	18	10.59	0.064		9.17	< 0.01		9.11	< 0.01
N Management	18	8.01	0.074		6.93	NS		6.89	0.069
N Rate x N Man	18	13.87	NS		12.00	NS		11.93	NS

Table 5.30. Boxworth percentage area lodged for Winner

N Rate	6 th July			12 th July		
Kg/ha	Conv	CM	Mean	Conv	CM	Mean
0						5
120	41	21	31	40	24	32
180	40	36	38	46	40	43
240	65	40	53	71	41	56
Mean	49	32	32	52	35	34
Treatment	df	SED	P Value		SED	P Value
N Rate	18	9.63	< 0.01		9.37	< 0.001
N Management	18	7.28	< 0.05		7.09	< 0.05
N Rate x N Man	18	12.6	NS		12.27	NS

Table 5.31. High Mowthorpe percentage area lodged on 10th July 2006

N Rate	Winner			Castille			Conv	CM	Grand
Kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
0			24			14	19		19
120	14	22	18	9	9	9	11	15	13
180	31	30	31	7	8	8	19	19	19
240	23	22	22	8	12	10	15	17	16
Mean	23	25	24	8	10	10	15	17	17
Treatmer	nt		df	SED	P Value				
Variety			3	2.02	< 0.01				
N Rate			36	3.01	NS				
N Manag	ement		36	2.27	NS				
Variety x	N Rate		37	3.89	< 0.05				
Variety x	/ariety x N Management		30	3.16	NS				
N Rate x	Rate x N Management		36	3.94	NS				
Variety x	ariety x N Rate x N Management		36	5.57	NS				

Table 5.32. High Mowthorpe percentage area lodged on 17th July 2006

N Rate	Winner			Castille			Conv	CM	Grand
Kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
0			27			13			20
120	17	19	18	14	14	14	15	16	16
180	22	21	22	12	13	12	17	17	17
240	17	20	19	12	11	11	14	16	15
Mean	19	20	21	13	13	12	15	16	17
Treatmen	t		df	SED	P Value				
Variety			3	1.17	< 0.01				
N Rate			36	2.31	0.076				
N Manage	ment		36	1.75	NS				
Variety x	N Rate		37	2.82	NS				
Variety x	N Managem	nent	30	2.21	NS				
N Rate x	I Rate x N Management		36	3.03	NS				
Variety x	Variety x N Rate x N Management		36	4.28	NS				

Table 5.33. High Mowthorpe percentage area lodged on 25^h July 2006

N Rate	Winner			Castille	_		Conv	CM	Grand
Kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
0			28			15			21
120	19	22	21	16	16	16	17	19	18
180	24	25	25	16	18	17	20	21	21
240	21	25	23	14	14	14	17	19	18
Mean	21	24	24	15	16	15	18	20	20
Treatmen	t		df	SED	P Value				
Variety			3	0.728	< 0.01				
N Rate			36	2.278	NS				
N Manage	ement		36	1.722	NS				
Variety x	N Rate		37	2.624	NS				
Variety x N Management		30	1.980	NS					
N Rate x I	ate x N Management		36	2.982	NS				
Variety x N Rate x N Management		36	4.218	NS					

Table 5.34. High Mowthorpe percentage area lodged on 31st July 2006

N Rate	Winner			Castille			Conv	CM	Grand
Kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
0			28			16			22
120	21	24	23	16	17	17	19	20	20
180	25	26	26	17	19	18	21	22	22
240	23	25	24	16	15	15	19	20	20
Mean	23	25	25	16	17	16	20	21	21
Treatment			df	SED	P Value				
Variety			3	0.794	< 0.01				
N Rate			36	2.323	NS				
N Managei	ment		36	1.756	NS				
Variety x N	N Rate		37	2.690	NS				
Variety x N	N Managem	ent	30	2.038	NS				
N Rate x N Management		36	3.041	NS					
Variety x N Rate x N Management		36	4.300	NS					

Table 5.35. Rosemaund percentage area lodged at harvest for cv. Winner

N Rate	Winner		
Kg/ha	Conv	CM	Mean
0			0
60	0	0	0
120	26	0	13
180	49	24	36
240	30	1	16
300	25	0	13
360	46	23	34
Mean	23	8	16
Treatment		SED	P-Value
N rate (36 df)		16.9	NS
N Managen	nent (36 df)	9.4	NS
N rate x Ma	an (36 df)	22.9	< 0.05

5.1.11 Pod greenness

At Boxworth, the percentage of green pods on Winner decreased from an average of 72% on the 9th June to 10% on 12th July (Tables 5.36 and 5.37). Increasing N rate from 0 to 120 kg N/ha and from 120 kg/ha to 240 kg/ha increased the percentage of green pods (P<0.05). On the 6th July, applying N at Managed timings reduced the percentage of green pods from 35% to 24% (P<0.05) compared to conventional timings. Canopy Management did not reduce the percentage of green pods at the other assessment dates.

At High Mowthorpe, the percentage of green pods was measured on both Winner and Castille. At this site the percentage of green pods decreased from on average 81% on the 10th July to 2% on 31st July (Tables 5.38 to 5.41). Increasing N rate from 0 to 120 kg N/ha and from 120 kg/ha to 240 kg/ha increased the percentage of green pods (P<0.05). Winner generally had a slightly greater percentage of green pods compared with Castille, but this difference was only statistically significant on the 10th July. Applying N at Managed timings did not affect the percentage of green pods at any of the assessment dates.

Table 5.36. Boxworth Pod greenness scores for Winner

N Rate	9 th June			23 June			30 June		
Kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
0	48		48	33		33	23		23
120	70	70	70	63	65	64	50	46	48
180	88	76	82	73	74	73	58	58	58
240	85	91	88	79	84	81	70	66	68
Mean	81	79	72	72	74	63	59	57	49
Treatment	df	SED	P Value		SED	P Value		SED	P Value
N Rate	18	7.64	< 0.001		2.99	< 0.001		3.92	< 0.001
N Management	18	5.78	NS		2.26	NS		2.96	NS
N Rate x N Man	18	10.01	NS		3.91	NS		5.13	NS

Table 5.37. Boxworth Pod greenness scores for Winner

N Rate	6 th July			12 th July		
Kg/ha	Conv	CM	Mean	Conv	CM	Mean
0	4		4	1		1
120	29	18	23	10	9	9
180	40	21	31	16	11	14
240	36	33	34	10	18	14
Mean	35	24	23	12	13	10
Treatment	df	SED	P Value		SED	P Value
N Rate	18	5.45	< 0.001		4.95	< 0.05
N Management	18	4.12	< 0.05		3.74	NS
N Rate x N Man	18	7.13	NS		6.49	NS

Table 5.38. High Mowthorpe Pod greenness scores on 10th July 2006

N Rate	Winner			Castille			Conv	СМ	Grand
Kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
0	59		59	64		64	61		61
120	85	89	87	86	73	80	86	81	83
180	92	90	91	88	91	90	90	91	90
240	94	92	93	91	87	89	92	89	91
Mean	90	90	82	88	84	80	89	87	81
Treatmen	t		df	SED	P Value				
Variety			3	0.91	0.050				
N Rate			36	2.12	< 0.001				
N Manage	ement		36	1.61	NS				
Variety x	N Rate		37	2.52	NS				
Variety x	N Managem	nent	30	1.94	NS				
N Rate x	te x N Management 36		36	2.78	NS				
Variety x	Variety x N Rate x N Management		36	3.93	< 0.05				

Table 5.39. High Mowthorpe Pod greenness scores on 17th July 2006

N Rate	Winner			Castille			Conv	CM	Grand
Kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
0	38		38	37		37	37		37
120	71	66	69	70	63	66	70	65	67
180	76	67	72	79	80	80	78	74	76
240	81	85	83	79	82	80	80	84	82
Mean	76	73	65	76	75	66	76	74	66
Treatmen	ıt		df	SED	P Value				
Variety			3	1.93	NS				
N Rate			36	4.14	< 0.001				
N Manage	ement		36	3.13	NS				
Variety x	N Rate		37	4.97	NS				
Variety x	ariety x N Management		30	3.86	NS				
N Rate x	N Rate x N Management		36	5.42	NS				
Variety x N Rate x N Management		36	7.67	NS					

Table 5.40. High Mowthorpe Pod greenness scores on 25^h July 2006

N Rate	Winner			Castille			Conv	CM	Grand
Kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
0	10		10	10		10	10		10
120	38	41	39	24	25	24	31	33	32
180	41	40	41	36	44	40	39	42	40
240	44	45	44	37	32	35	40	39	39
Mean	41	42	34	32	34	27	37	38	30
Treatmen	nt		df	SED	P Value				
Variety			3	15.72	NS				
N Rate			36	3.51	< 0.001				
N Manage	ement		36	2.65	NS				
Variety x	N Rate		37	16.29	0.093				
Variety x	ty x N Management		30	15.97	NS				
N Rate x	ate x N Management		36	4.59	NS				
Variety x N Rate x N Management		36	16.8	NS					

Table 5.41. High Mowthorpe Pod greenness scores on 31st July 2006

N Rate	Winner			Castille			Conv	CM	Grand
Kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
0	1		1	1		1	1		1
120	3	3	3	1	1	1	2	2	2
180	4	3	4	2	2	2	3	3	3
240	5	4	5	2	1	2	4	2	3
Mean	4	3	3	2	1	1	3	2	2
Treatment			df	SED	P Value				
Variety			3	1.764	NS				
N Rate			36	0.606	< 0.001				
N Managei	ment		36	0.458	NS				
Variety x N	N Rate		37	1.880	NS				
Variety x N Management		30	1.823	NS					
N Rate x N	N Rate x N Management		36	0.794	NS				
Variety x N Rate x N Management			36	1.123	NS				

5.1.12 Seed N concentration

The rate of N had the strongest effect on the seed N concentration at all three sites (P<0.001). Across all treatments, increasing the N rate from 0 kg/ha to 360 kg/ha increased the seed N concentration from 2.52% to 3.34% at Boxworth (Table 5.42), 2.40% to 3.06% at High Mowthorpe (Table 5.43) and from 2.71% to 3.62% at Rosemaund (Table 5.43). The timing of the N applications interacted with the N rate at Boxworth (P<0.05) because applying 120 kg N/ha at Managed timings increased seed N from 2.82% to 2.88%, but applying 360 kg at Managed timings decreased seed N from 3.44% to 3.24%. At Rosemaund, applying N at Managed timings increased the seed N of Castille from 3.29% to 3.37% (P<0.05) and had no effect on Winner. Applying N at Managed timings had no effect on seed N concentration at High Mowthorpe. Castille had a slightly greater seed N than Winner at Boxworth (P = 0.089). Variety did not affect seed N concentration at the other two sites.

Table 5.42. Boxworth seed N concentrations (% dry matter)

45

47

45

0.057

0.062

0.088

N Rate	Winne	r		Castille)		Conv	CM	Grand
Kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
0	2.63		2.63	2.41		2.41	2.52		2.52
120	2.82	2.95	2.88	2.81	2.81	2.81	2.82	2.88	2.85
180	3.18	3.06	3.12	3.06	2.99	3.03	3.12	3.03	3.07
240	3.25	3.25	3.25	3.07	3.08	3.07	3.16	3.16	3.16
360	3.45	3.28	3.36	3.43	3.19	3.31	3.44	3.24	3.34
Mean	3.14	3.12	3.13	3.09	3.03	3.06	3.12	3.07	3.10
Treatme	nt		df	SED	P Va	lue			
Variety			4	0.046 0.089					
Nitrogen 47		0.044	< 0.0	< 0.001					
N management		47	0.031	0.070					
Variety x Nitrogen		45	0.072	NS					

NS

NS

< 0.05

Var x N x Man Without Folicur

Variety x Management

Nitrogen x Management

Table 5.43. High Mowthorpe seed N concentrations (% dry matter)

N Rate	Winne			Castille			Conv	CM	Grand
	_	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Kg/ha	Conv	CIVI	Mean	CONV	CIVI	IVIEALI	IVICALI	IVIEALI	Meari
0	2.30		2.30	2.50		2.50	2.40		2.40
120	2.73	2.79	2.76	2.68	2.53	2.61	2.71	2.66	2.68
180	3.01	2.96	2.98	2.91	2.93	2.92	2.96	2.94	2.95
240	2.94	2.82	2.88	2.91	2.99	2.95	2.92	2.91	2.91
360	3.22	2.96	3.09	2.98	3.10	3.04	3.10	3.03	3.06
Mean	2.98	2.88	2.80	2.87	2.89	2.80	2.92	2.89	2.80
Treatme	nt		df	SED	P Val	ue			
Variety			4	0.030	NS				
Nitrogen			47	0.110	< 0.0	01			
N manag	gement		47	0.110	NS				
Variety x Nitrogen 45			45	0.150	NS				
Variety x Management 45		45	0.150	NS					
Nitrogen x Management 47		47	0.110	NS					
Var x N x		-	45	0.150	NS				

Without Folicur

Table 5.44. Rosemaund seed N concentrations (% dry matter)

N Rate	Winne	er		Castille			Conv	CM	Grand
Kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
0	2.75		2.75	2.68		2.68	2.71		2.71
120	2.99	3.23	3.11	2.98	3.21	3.10	2.98	3.22	3.10
180	2.96	3.33	3.15	3.23	3.35	3.29	3.10	3.34	3.22
240	3.65	3.36	3.50	3.44	3.36	3.40	3.54	3.36	3.45
360	3.86	3.59	3.73	3.51	3.54	3.52	3.68	3.57	3.62
Mean	3.37	3.38	3.25	3.29	3.37	3.20	3.33	3.37	3.22
Treatme	nt		df	SED	P Val	lue			
Variety			4	0.071	NS				
Nitrogen			47	0.132	< 0.0	01			
N manag	jement		47	0.132	NS				
Variety x	Nitrog	en	45	0.132	NS				
Variety x	Manag	jement	45	0.189	< 0.0	5			
Nitrogen x Management 47		47	0.132	NS					
Var x N x	k Man		45	0.189	NS				

Without Folicur

5.1.13 Partitioning of dry matter and nitrogen for cv Winner

At Boxworth, increasing the N rate from 0 kg/ha to 120 kg/ha increased the overall crop biomass. The relative increase in biomass partitioned was greatest to the seeds then the pod walls and least to the stems (Table 5.45). However these effects were not statistically significant. N rates between 120 and 360 kg/ha and timing of N

applications did not produce any consistent effects on total dry matter and its partitioning. Increasing N rate increased the concentration of N in the stems, pod walls and seed (Table 5.46). This led to a greater amount of N per hectare in the stem, pod wall and seed components at the higher N rates. Delaying N applications did not significantly affect the concentration of N in the stem, pod walls or seed, nor did it affect the amount of N per hectare in these tissues.

At High Mowthorpe, increasing N rate increased the total crop biomass and the biomass of the stems, pod walls and seeds (P<0.05; Table 5.47). N rate and N Management interacted for their effect on the biomass of the stems, pods and seeds. Applying N at Managed timings increased biomass at low N rates and decreased biomass at high N rates. Increasing N rate increased the concentration of N in the stems, pod walls and seed (Table 5.48). This lead to greater amount of N per hectare in the stem, pod wall and seed components at the higher N rates. At Managed N timings more N per hectare was in the seed and total crop at low N rates than at high N rates.

At Rosemaund, increasing N rate increased the total crop biomass and the biomass of the stems, pod walls and seeds (P<0.05; Table 5.49). Applying N at Managed timings increased the harvest index from 0.319 to 0.353 across all treatments (P<0.05). This effect was caused by a reduction in stem biomass and an increase in seed biomass. Increasing N rate increased the concentration of N in the stems, pod walls and seed (Table 5.50). This led to a greater amount of N/ha in the stem, pod wall and seed components at the higher N rates. Applying N at Managed timings increased the N harvest index from 0.623 to 0.660 across all treatments (P<0.05). This was caused by an increase of N in the seed rather than a decrease of N in the stem and pod walls.

At the N rate closest to the economic optimum there was a trend for the treatments with Managed timings to have a lower stem biomass. The stem biomass resulting from Conventional and Managed N timings were 8.20 t/ha and 7.73 t/ha respectively at Boxworth, 4.06 t/ha and 3.86 t/ha at High Mowthorpe and 5.31 t/ha and 4.54 t/ha at Rosemaund.

Table 5.45. Boxworth dry matter components at harvest for cv. Winner.

N Rate	Stem dr	y weight	Pod dry	weight	Seed dry	weight	Total dry	y weight	Harvest	index
kg/ha	(t/ha)		(t/ha)		(t/ha)		(t/ha)			
	Conv	CM	Conv	CM	Conv	CM	Conv	CM	Conv	CM
0	7.31		2.66		4.34		14.32		0.309	
120	8.20	7.73	3.29	3.09	5.52	5.60	17.01	16.42	0.326	0.339
180	7.10	8.74	2.80	2.75	5.12	4.69	15.03	16.17	0.341	0.281
240	6.92	7.68	3.50	3.36	5.72	6.04	16.14	17.08	0.354	0.354
Mean	7.41	8.05	3.20	3.07	5.45	5.44	16.06	16.56	0.340	0.325
Treatment	SED	P value	SED	P value	SED	P value	SED	P value	SED	P value
Nrate (18 df)	0.84	NS	0.350	NS	0.652	NS	1.64	NS	0.018	0.090
Management (18 df)	0.64	NS	0.264	NS	0.493	NS	1.24	NS	0.015	NS
Nrate x Man (18 df)	1.10	NS	0.458	NS	0.854	NS	2.15	NS	0.026	NS

Table 5.46. Boxworth crop N content at harvest for cv. Winner.

N Rate kg/ha	Stem+ concen (%)	pod N tration	Seed N concen (%)		Stem+I content N/ha)		Seed N (kg N/	l content ha)	Total cr content N/ha)	•	Nitroger index	n harvest
	Conv	CM	Conv	CM	Conv	CM	Conv	CM	Conv	CM	Conv	CM
0	0.700		2.63		72		114		186		0.629	
120	0.820	0.943	2.82	2.95	96	109	156	165	252	275	0.624	0.621
180	1.010	1.283	2.99	3.06	102	146	162	144	264	290	0.619	0.485
240	1.055	0.948	3.25	3.25	109	107	186	196	295	302	0.634	0.655
Mean	0.962	1.058	3.02	3.09	102	121	168	168	270	289	0.626	0.587
										_		
Treatment	SED	P value	SED	P value	SED	P value	SED	P value	SED	P value	SED	P value
Nrate (18 df)	0.096	< 0.01	0.064	< 0.001	16.1	< 0.05	21.8	< 0.05	29.6	< 0.01	0.0320	< 0.05
Management (18 df)	0.072	NS	0.052	NS	12.2	NS	16.4	NS	24.2	NS	0.0261	NS
Nrate x Man (18 df)	0.125	NS	0.091	NS	21.1	NS	28.5	NS	41.9	NS	0.0452	NS

Table 5.47. High Mowthorpe dry matter components at harvest for cv. Winner.

N Rate	Stem dry	y weight	Pod dry	weight	Seed dry	weight	Total dry	y weight	Harvest	index
kg/ha	(t/ha)		(t/ha)		(t/ha)		(t/ha)			
	Conv	CM	Conv	CM	Conv	CM	Conv	CM	Conv	CM
0	2.09		1.31		1.74		5.14		0.334	
120	2.81	4.60	1.90	2.73	2.64	4.10	7.35	11.42	0.352	0.359
180	3.71	4.11	2.40	3.32	3.15	4.21	9.26	11.64	0.338	0.359
240	4.06	3.86	3.37	2.53	4.53	3.75	11.96	10.14	0.379	0.364
Mean	3.53	4.19	2.56	2.86	3.44	4.02	9.52	11.07	0.356	0.361
Treatment	SED	P value	SED	P value	SED	P value	SED	P value	SED	P value
Nrate (18 df)	0.563	< 0.01	0.387	< 0.01	0.436	< 0.001	1.14	< 0.001	0.0150	NS
, ,										
Management (18 df)	0.425	NS	0.285	NS	0.329	NS	0.86	0.090	0.0114	NS
Nrate x Man (18 df)	0.737	NS	0.494	< 0.05	0.571	< 0.05	1.49	< 0.05	0.0197	NS

Table 5.48. High Mowthorpe crop N content at harvest for cv. Winner.

N Rate kg/ha	Stem+ concen (%)	pod N tration	Seed N concen (%)		Stem+F content N/ha)		Seed N (kg N/	l content ha)	Total cr content N/ha)	•	Nitrogei index	n harvest
	Conv	CM	Conv	CM	Conv	CM	Conv	CM	Conv	CM	Conv	CM
0	0.465		2.30		15		37		52		0.702	
120	0.550	0.783	2.73	2.79	26	59	73	113	99	172	0.729	0.667
180	0.838	0.710	3.01	2.96	54	56	95	125	149	181	0.649	0.704
240	0.768	0.920	2.94	2.82	60	58	133	103	193	160	0.701	0.636
Mean	0.719	0.804	2.89	2.86	47	57	100	114	147	171	0.693	0.669
Treatment	SED	P value	SED	P value	SED	P value	SED	P value	SED	P value	SED	P value
Nrate (18 df)	0.077	0.067	0.143	< 0.001	10.2	< 0.01	13.3	< 0.001	21.1	< 0.001	0.033	NS
Management (18 df)	0.058	NS	0.108	NS	7.7	NS	10.1	NS	16.0	NS	0.025	NS
Nrate x Man (18 df)	0.101	0.051	0.187	NS	13.4	NS	17.5	< 0.05	27.7	< 0.05	0.043	NS

Table 5.49. Rosemaund dry matter components at harvest for cv. Winner.

N Rate	Stem dry	weight	Pod dry	weight	Seed dry	weight	Total dry	y weight	Harvest	index
kg/ha	(t/ha)		(t/ha)		(t/ha)		(t/ha)			
	Conv	CM	Conv	CM	Conv	CM	Conv	CM	Conv	CM
0	3.03		1.90		2.17		7.10		0.306	
120	4.74	4.35	3.54	3.34	4.18	4.08	12.45	11.78	0.336	0.347
180	5.15	4.47	2.97	3.19	3.51	3.95	11.62	11.62	0.302	0.340
240	5.31	4.54	3.42	3.73	4.12	4.91	12.85	13.19	0.320	0.372
Mean	5.07	4.45	3.31	3.42	3.94	4.31	12.31	12.20	0.319	0.353
Treatment	SED	P value	SED	P value	SED	P value	SED	P value	SED	P value
Nrate (18 df)	0.653	< 0.001	0.424	< 0.001	0.523	< 0.001	1.42	< 0.001	0.020	NS
Management (18 df)	0.460	NS	0.320	NS	0.395	NS	1.07	NS	0.015	< 0.05
Nrate x Man (18 df)	0.832	NS	0.555	NS	0.684	NS	1.86	NS	0.026	NS

Table 5.50. Rosemaund crop N content at harvest for cv. Winner.

N Rate kg/ha	Stem+ concen (%)	pod N tration	Seed N concen (%)		Stem+ content N/ha)		Seed N (kg N/	N content ha)	Total cr content N/ha)	•	Nitroge index	n harvest
	Conv	CM	Conv	CM	Conv	CM	Conv	CM	Conv	CM	Conv	CM
0	0.618		2.75		30		60		90		0.663	
120	0.760	0.825	2.99	3.23	63	64	125	132	188	196	0.665	0.675
180	0.988	0.910	2.96	3.33	82	70	105	132	187	202	0.562	0.655
240	0.990	1.070	3.65	3.36	84	88	151	164	235	253	0.642	0.650
Mean	0.913	0.935	3.20	3.31	76	74	127	143	203	217	0.623	0.660
Treatment	SED	P value	SED	P value	SED	P value	SED	P value	SED	P value	SED	P value
Nrate (18 df)	0.077	< 0.001	0.177	< 0.001	10.7	< 0.001	19.8	< 0.001	27.5	< 0.001	0.031	NS
Management (18 df)	0.058	NS	0.134	NS	8.1	NS	15.0	NS	20.8	NS	0.024	0.101
Nrate x Man (18 df)	0.100	NS	0.232	NS	14.1	NS	25.9	NS	36.0	NS	0.041	NS

5.2 Experiment year 2 - 2006/7

5.2.1 Soil and crop N in late January / early February

Experiments were drilled at ADAS Boxworth (Cambridgeshire) on 1/9/06, ADAS High Mowthorpe (N. Yorkshire) on 10/9/06 and ADAS Rosemaund (Herefordshire) on 28/8/06. The soil mineral N and GAI of the experimental crops was measured in February. This showed that the crop N content and the soil mineral N of Winner and Castille were not significantly different. A summary of this information (Table 5.51) shows that the combined supply of nitrogen from the crop and soil in February was 135 kg N/ha at Boxworth, 116 kg N/ha at Rosemaund and 112 kg N/ha at High Mowthorpe. The GAI was greater than 1 at all sites which meant that Folicur used used at a rate of 1.0 l/ha between early stem extension and green bud.

Table 5.51. Soil N, crop N and Fertiliser requirement for canopy managed treatments

	Boxworth	High Mowthorpe	Rosemaund
Feb SMN (kg/ha)	43 (29 Jan)	58 (13 Feb)	54 (14 Feb)
Feb GAI	2.37	1.21	2.08
Crop N (kg/ha)	92	54	61
SNS (kg/ha)	135	112	116
Fert N for GAI 3.5	67	115	100

SMN – soil mineral nitrogen

SNS – soil nitrogen supply - sum of SNS and crop N

5.2.2 N treatments

Based on the soil N supply the amount of fertiliser N required to achieve a GAI of 3.5 by flowering was 67 kg/ha at Boxworth, 100 kg/ha at Rosemaund and 115 kg/ha at High Mowthorpe. For managed treatments this dose was applied at the conventional 2nd split timing at all sites. After sufficient N had been applied to achieve the optimum GAI of 3.5 the remainder of the N was applied between late stem extension and early/mid flowering in late April/early May. The N applications in each split are described in Tables 5.52, 5.53 and 5.54. Timings of each N application are described in Table 5.55.

Table 5.52. Boxworth N applications (kg N/ha)

N treatment	Management	1 st split	2 nd split	3 rd split	Total
1		0	0	0	0
2	Conventional	30	30	0	60
3	Conventional	60	60	0	120
4	Conventional	90	90	0	180
5	Conventional	120	120	0	240
6	Conventional	150	150	0	300
7	Conventional	180	180	0	360
8	Managed	0	60	0	60
9	Managed	0	70	50	120
10	Managed	0	70	110	180
11	Managed	0	70	170	240
12	Managed	0	70	230	300
13	Managed	0	70	290	360

Table 5.53. High Mowthorpe N applications (kg N/ha)

N treatment	Management	1 st split	2 nd split	3 rd split	Total
1		0	0	0	0
2	Conventional	30	30	0	60
3	Conventional	60	60	0	120
4	Conventional	90	90	0	180
5	Conventional	120	120	0	240
6	Conventional	150	150	0	300
7	Conventional	180	180	0	360
8	Managed	0	60	0	60
9	Managed	0	120	0	120
10	Managed	0	120	60	180
11	Managed	0	120	120	240
12	Managed	0	120	180	300
13	Managed	0	120	240	360

Table 5.54. Rosemaund N applications (kg N/ha)

N treatment	Management	1 st split	2 nd split	3 rd split	Total
1		0	0	0	0
2	Conventional	30	30	0	60
3	Conventional	60	60	0	120
4	Conventional	90	90	0	180
5	Conventional	120	120	0	240
6	Conventional	150	150	0	300
7	Conventional	180	180	0	360
8	Managed	0	60	0	60
9	Managed	0	100	20	120
10	Managed	0	100	80	180
11	Managed	0	100	140	240
12	Managed	0	100	200	300
13	Managed	0	100	260	360

Table 5.55. Timings of Nitrogen and Folicur treatments

	Boxworth	High Mowthorpe	Rosemaund
1 st N timing	26 February	7 March	2 March
2 nd N timing	15 March	2 April	29 March
3 rd N timing	4 April	16 April	19 April
Folicur timing	14 March	4 April	28 March
	(1.0 l/ha)	(1.0 l/ha)	(1.0 l/ha)

5.2.3 Seed yield

At Boxworth, variety had the largest effect on seed yield. Castille averaged 3.65 t/ha compared with 3.04 t/ha for Winner (P<0.001; Table 5.56). Across the two varieties, increasing N rate from 0 to 60 kg N/ha significantly increased yield from 2.89 t/ha to 3.31 t/ha (P<0.001). Further increases in N rate resulted in small and non-significant yield increases. Across all treatments, the Managed N timing treatment increased yield over the Conventional N timing treatment from 3.34 t/ha to 3.42 t/ha (P=0.082). The advantage of the Managed N tended to be greater at high N rates and with Winner. For example Winner at 300 and 360 kg N/ha the Managed timing gave a 0.28 t/ha yield advantage over the Conventional timing. The effect of the N Managed timings did not appear to be affected by the use of Folicur.

At High Mowthorpe, across all treatments N rate increased yield from 3.07 t/ha at nil N to 4.98 t/ha at 300 kg N/ha (P<0.001; Table 5.57). Castille averaged 4.96 t/ha compared with 4.28 t/ha for Winner (P<0.001). On average, the Managed N timings reduced yield by 0.14 t/ha compared with the Conventional N timings (P<0.001). There was an interaction between N timing and variety (P = 0.069). This was caused because the effect of N timing was strongest for Winner at 0.21 t/ha and negligible for Castille. Folicur (1.0 l/ha) increased yield of Winner by 0.13 t/ha (P<0.01) and had no effect on Castille.

At Rosemaund, Castille averaged 4.85 t/ha compared with 4.56 t/ha for Winner (P<0.001; Table 5.58). Increasing N rate significantly increased yield (P<0.001). Across all treatments N rate increased yield from 3.55 t/ha at nil N to 5.00 t/ha at 300 kg N/ha (P<0.001). Variety and Folicur interacted (P=0.064). This interaction was caused because Folicur increased the yield of Winner by 0.21 t/ha and only increased the yield of Castille by 0.08 t/ha. N timing did not affect yield. There was a significant interaction between N timing, N rate and Folicur (P<0.05), but it is difficult to identify what caused this interaction (Table 5.58).

Table 5.56. Boxworth seed yields (t/ha @ 9% mc)

Variety	N rate	No Fol			Folicur	(1.0 l/ł	na)	Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	2.41		2.41	2.80		2.80	2.60		2.60
Winner Winner	60	2.41	3.10	2.41	3.25	2.84	2.80 3.05	3.05	2.97	3.01
Winner	120	3.39	3.18	3.28	2.72	3.24	2.98	3.05	3.21	3.13
Winner	180	3.39	3.18	3.28	2.72	2.94	2.90	3.03	3.06	3.13
Winner	240	3.11	3.19	3.25	3.03	3.08	3.05	3.13	3.13	3.10
Winner	300	3.11	3.13	3.13	2.65	3.20	2.92	2.88	3.16	3.02
Winner	360	3.12	3.13	3.12	2.92	3.38	3.15	2.98	3.16	3.02
Winner	Mean	3.15	3.14	3.04	2.92	3.30	2.98	3.03	3.13	3.12
VVIIIIIEI	ivicari	3.13	3.13	3.04	2.90	3.11	2.70	3.03	3.13	3.01
Castille	0	3.15		3.15	3.19		3.19	3.17		3.17
Castille	60	3.44	3.60	3.52	3.71	3.67	3.69	3.57	3.63	3.60
Castille	120	3.88	3.57	3.72	3.63	3.79	3.71	3.75	3.68	3.71
Castille	180	4.01	3.82	3.91	3.54	3.57	3.56	3.78	3.69	3.73
Castille	240	3.84	3.65	3.75	3.39	3.72	3.55	3.61	3.69	3.65
Castille	300	3.71	3.96	3.84	3.27	3.43	3.35	3.49	3.70	3.59
Castille	360	3.63	3.66	3.64	3.93	4.10	4.01	3.78	3.88	3.83
Castille	Mean	3.75	3.71	3.65	3.58	3.71	3.58	3.66	3.71	3.61
Win+Cas	0	2.78		2.78	2.99		2.99	2.89		2.89
Win+Cas	60	3.14	3.35	3.25	3.48	3.26	3.37	3.31	3.30	3.31
Win+Cas	120	3.63	3.37	3.50	3.17	3.51	3.34	3.40	3.44	3.42
Win+Cas	180	3.70	3.50	3.60	3.20	3.26	3.23	3.45	3.38	3.41
Win+Cas	240	3.47	3.42	3.45	3.21	3.40	3.30	3.34	3.41	3.37
Win+Cas	300	3.42	3.55	3.48	2.96	3.31	3.14	3.19	3.43	3.31
Win+Cas	360	3.33	3.40	3.37	3.42	3.74	3.58	3.38	3.57	3.47
Win+Cas	Mean	3.45	3.43	3.35	3.24	3.41	3.28	3.34	3.42	3.31
Treatment			df	SED	P-Val	ue				
Folicur			3	0.068	NS					
Variety			75	0.042	<0.0	01				
Folicur x V	ariety		75	0.080	NS	0 1				
N rate	arioty		75 75	0.079	<0.0	01				
N Manager	ment		75	0.082	0.082					
Var x Nrate			75	0.131	NS	_				
Var x Man	-		75	0.115	NS					
Nrate x Ma	an		75	0.107	NS					
	Var x Nrate x Man		75	0.151	NS					
Fol x Nrate			75	0.160	<0.0	5				
Fol x Man			75	0.142	0.108					
	Fol x Var x Nrate		75	0.223	NS					
	Fol x Var x Man		75	0.198	NS					
Fol x Nrate			75	0.180	NS					
Fol x Var x	Nrate x	Man	75	0.254	NS					

Table 5.57. High Mowthorpe seed yields (t/ha @ 9% mc)

Variety	N rate	No Fol				(1.0 /		Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	2.64		2.64	2.85		2.85	2.75		2.75
Winner	60	3.77	3.73	3.75	3.90	3.81	3.85	3.84	3.77	3.80
Winner	120	4.34	4.18	4.26	4.51	4.49	4.50	4.43	4.33	4.38
Winner	180	4.68	4.47	4.58	4.68	4.47	4.57	4.43	4.47	4.57
			4.47	4.39						
Winner	240	4.53			4.91	4.42	4.66	4.72	4.34	4.53
Winner	300	4.84	4.53	4.69	4.78	4.52	4.65	4.81	4.52	4.67
Winner	360	4.55	4.34	4.45	4.71	4.48	4.59	4.63	4.41	4.52
Winner	Mean	4.45	4.25	4.11	4.58	4.36	4.24	4.52	4.31	4.17
Castille	0	3.35		3.35	3.44		3.44	3.40		3.40
Castille	60	4.35	4.60	4.47	4.53	4.52	4.52	4.44	4.56	4.50
Castille	120	5.04	4.94	4.99	5.00	5.02	5.01	5.02	4.98	5.00
Castille	180	5.27	5.13	5.20	5.17	5.10	5.14	5.22	5.11	5.17
Castille	240	5.35	5.07	5.21	5.31	5.30	5.30	5.33	5.18	5.26
Castille	300	5.47	5.21	5.34	5.43	5.08	5.26	5.45	5.15	5.30
Castille	360	5.47	5.44	5.45	5.19	5.27	5.23	5.33	5.35	5.34
Castille	Mean	5.16	5.06	4.86	5.10	5.05	4.84	5.13	5.06	4.85
Win+Cas	0	3.00		3.00	3.15		3.15	3.07		3.07
Win+Cas	60	4.06	4.16	4.11	4.21	4.17	4.19	4.14	4.17	4.15
Win+Cas	120	4.69	4.56	4.62	4.76	4.75	4.75	4.72	4.66	4.69
Win+Cas	180	4.97	4.80	4.89	4.92	4.78	4.85	4.95	4.79	4.87
Win+Cas	240	4.94	4.67	4.80	5.11	4.86	4.98	5.02	4.76	4.89
Win+Cas	300	5.16	4.87	5.01	5.10	4.80	4.95	5.13	4.84	4.98
Win+Cas	360	5.01	4.89	4.95	4.95	4.88	4.91	4.98	4.88	4.93
Win+Cas	Mean	4.80	4.66	4.48	4.84	4.71	4.54	4.82	4.68	4.51
Treatment			df	SED	P-Va	lue				
Folicur			3	0.128	NS					
Variety			7 5	0.035	<0.0	01				
Folicur x V	ariety		75	0.133	<0.0					
N rate	aricty		75 75	0.133	<0.0					
N Manager	mant		75 75	0.068	<0.0					
Var x Nrat			75 75	0.008	NS	O I				
	<u></u>		75 75		0.06	n				
Var x Man	n n			0.096						
Nrate x Ma			75 75	0.089	0.10	4				
Var x Nrate x Man 75		0.125	NS	_						
		0.157	<0.0	5						
Fol x Man			75 75	0.150	NS					
	ol x Var x Nrate		75	0.182	NS					
	ol x Var x Man		75	0.171	NS					
Fol x Nrate			75	0.108	NS					
Fol x Var x	Nrate x	Man	75	0.152	NS					

Table 5.58. Rosemaund seed yields (t/ha @ 9% mc)

Variety	N rate	No Fol				(1.0 1/1	•	Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Winner	0	3.10		3.10	3.21		3.21	3.16		3.16
Winner	60	3.86	3.92	3.89	4.05	4.38	4.22	3.96	4.15	4.06
Winner	120	4.23	4.45	4.34	4.93	4.57	4.75	4.58	4.51	4.54
Winner	180	5.09	4.70	4.90	5.16	4.77	4.96	5.13	4.73	4.93
Winner	240	4.83	4.65	4.74	4.99	4.99	4.99	4.91	4.82	4.86
Winner	300	4.88	4.92	4.90	4.78	4.86	4.82	4.83	4.89	4.86
Winner	360	4.50	4.75	4.63	4.91	4.96	4.94	4.71	4.86	4.78
Winner	Mean	4.56	4.57	4.36	4.80	4.76	4.56	4.68	4.66	4.46
Castille	0	3.48		3.48	3.60		3.60	3.54		3.54
Castille	60	4.73	4.53	4.63	4.44	4.54	4.49	4.59	4.53	4.56
Castille	120	4.64	4.72	4.68	5.11	4.85	4.98	4.88	4.79	4.83
Castille	180	5.01	5.05	5.03	5.08	5.36	5.22	5.04	5.20	5.12
Castille	240	5.04	5.05	5.05	4.84	5.13	4.99	4.94	5.09	5.02
Castille	300	5.10	5.06	5.08	5.23	5.19	5.21	5.17	5.13	5.15
Castille	360	5.15	4.93	5.04	5.19	4.98	5.08	5.17	4.96	5.06
Castille	Mean	4.95	4.89	4.71	4.98	5.01	4.80	4.96	4.95	4.75
Win+Cas	0	3.29		3.29	3.41		3.41	3.35		3.35
Win+Cas	60	4.30	4.22	4.26	4.25	4.46	4.35	4.27	4.34	4.31
Win+Cas	120	4.44	4.59	4.51	5.02	4.71	4.86	4.73	4.65	4.69
Win+Cas	180	5.05	4.88	4.96	5.12	5.06	5.09	5.09	4.97	5.03
Win+Cas	240	4.93	4.85	4.89	4.91	5.06	4.99	4.92	4.96	4.94
Win+Cas	300	4.99	4.99	4.99	5.01	5.03	5.02	5.00	5.01	5.00
Win+Cas Win+Cas	360 Mean	4.83 4.76	4.84 4.73	4.83 4.53	5.05 4.89	4.97 4.88	5.01 4.68	4.94 4.82	4.91 4.81	4.92 4.61
Treatment			df	SED	P-Val	ue				
Folicur			3	0.068	NS					
Variety			75 75	0.063	< 0.00					
Folicur x V	ariety		75 75	0.093	0.064					
N rate			75 75	0.118	<0.00	ונ				
N Manager			75 75	0.122	NS					
Var x Nrate Var x Man	U		75 75	0.196	NS NS					
Nrate x Ma	ın		75 75	0.173 0.160	NS NS					
			75 75	0.180	NS					
		0.228	NS							
Fol x Man			0.151	NS						
		75 75	0.131	0.051						
	Fol x Var x Man		75 75	0.205	NS					
	Fol x Nrate x Man		75 75	0.203	< 0.05	5				
	Nrate x	Man	75	0.257	NS	-				

5.2.4 Oil content

At Boxworth, increasing N rate significantly reduced oil content (P<0.001; Table 5.59). Increasing N rate from nil to 360 kg N/ha reduced oil content from 40.1% to 37.5%. Linear regression showed that each 100 kg increase in N rate reduced oil content by 0.74% (P<0.001). Neither variety nor N timing affected oil content. Folicur at 1.0 I/ha increased oil content by 0.4%, but this effect was not statistically significant (Table 5.60).

At High Mowthorpe, increasing N rate significantly reduced oil content (P<0.001; Table 5.61). Increasing N rate from nil to 360 kg N/ha reduced oil content from 41.8% to 38.7%. Linear regression showed that each 100 kg increase in N rate reduced oil content by 0.75% (P<0.001). Castille had an average oil content of 40.5% which was significantly greater than Winner at 39.6% (P<0.05). Folicur at 1.0 I/ha had no effect on oil content (Table 6.62). N timing did not affect oil content.

At Rosemaund, increasing N rate from nil to 360 kg N/ha reduced oil content from 41.7% to 40.6%, but this effect was not statistically significant (Table 5.63). Neither variety, N timing, nor Folicur significantly affected oil content (Table 5.64).

Table 5.59. Boxworth Oil contents (% dry matter)

N Rate	Winner			Castill			Conv	CM	Grand
kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
0	40.0			40.3			40.1		40.1
120	39.2	39.0	39.1	38.9	38.3	38.6	39.1	38.7	38.9
240	37.3	38.7	38.0	37.4	38.1	37.8	37.4	38.4	37.9
360	37.0	38.6	37.8	36.9	37.5	37.2	37.0	38.1	37.5
Mean	37.8	38.8	38.7	37.7	38.0	38.5	37.8	38.4	38.6
Treatme	ent			df	SED	P Value			
Variety				45	0.41	NS			
Nitrogei	า			45	0.58	< 0.001			
N mana	gement			45	0.41	NS			
Variety	x Nitroge	en		45	0.82	NS			
Variety x Management				45	0.58	NS			
Nitrogen x Management				45	0.82	NS			
Var x N	x Man			45	1.15	NS			

Without Folicur

Table 5.60. Boxworth Oil contents (% dry matter) effects of Folicur

		Conven	tional	Managed	l timing	Mean	
	N rate	Nil	Folicur	Nil	Folicur	Nil	Folicur
Winner	120 kg/ha	39.2	38.3	39.0	39.8	39.1	39.0
Winner	240 kg/ha	37.3	38.5	38.7	39.0	38.0	38.8
Castille	120 kg/ha	38.9	38.6	38.3	38.8	38.6	38.7
Castille	240 kg/ha	37.4	38.6	38.1	38.9	37.8	38.7
Mean		38.2	38.5	38.6	39.1	38.4	38.8
		SED	P-Value				
Folicur		0.278	NS				
Folicur x	Variety	0.393	NS				
Folicur x N rate		0.393	NS				
Folicur x	N timing	0.393	NS				

Table 5.61. High Mowthorpe Oil contents (% dry matter)

N Rate	Winne	er		Castille)		Conv	CM	Grand
kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
0	40.9		40.9	42.7		42.7	41.8		41.8
120	39.5	38.8	39.2	40.7	39.2	40.0	40.1	39.0	39.5
240	38.5	40.5	39.5	40.2	40.2	40.2	39.3	40.3	39.8
360	37.6	39.6	38.6	38.3	39.5	38.9	38.0	39.5	38.7
Mean	38.5	39.6	39.6	39.7	39.6	40.5	39.8	40.2	40.0
Treatment		df	SED	P Value	ے				
Houtine			ai.	OLD	ı vara	•			
Variety			45	0.43	0.04	3			
Nitrogen			45	0.61	< 0.00	1			
N manag	jement		45	0.43	NS				
Variety x	Nitrog	en	45	0.61	NS				
Variety x	Manaç	gement	45	0.87	NS				
Nitrogen x		45	0.87	NS					
Management									
Var x N x	k Man		45	1.22	NS				

Without Folicur

Table 5.62. High Mowthorpe Oil contents (% dry matter) effects of Folicur

		Convent	ional	Manage	ed timing	Mean	
	N rate	Nil	Folicur	Nil	Folicur	Nil	Folicur
Winner	120 kg/ha	39.5	40.0	38.8	38.3	39.1	39.2
Winner	240 kg/ha	38.5	38.0	40.5	38.2	39.5	38.1
Castille	120 kg/ha	40.7	39.9	39.2	39.9	39.9	39.9
Castille	240 kg/ha	40.2	39.3	40.2	38.1	40.2	38.7
Mean		39.7	39.3	39.6	38.6	39.7	39.0
		SED	P-Value				
Folicur		0.363	NS				
Folicur x	Variety	0.515	NS				
Folicur x	Folicur x N rate		NS				
Folicur x	N timing	0.515	NS				

Table 5.63. Rosemaund Oil contents (% dry matter)

N Rate	Winne	er		Castille)		Conv	CM	Grand
kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
0	42.2		42.2	41.1		41.8	41.7		41.7
120	40.9	41.1	41.0	40.7	39.4	40.1	40.8	40.3	40.5
240	41.6	41.6	41.6	39.8	40.1	40.0	40.7	40.9	40.8
360	39.1	40.9	40.0	41.6	40.7	41.2	40.4	40.8	40.6
Mean	40.5	41.2	41.2	40.7	40.1	40.6	40.6	40.6	40.9
Treatme	nt		df	SED	P Value	9			
Variety			45	0.39	NS				
Nitrogen			45	0.55	NS				
N manag	gement		45	0.39	NS				
Variety x	Nitrog	en	45	0.78	0.062				
Variety x	Manaç	gement	45	0.55	NS				
Nitrogen x 45		45	0.78	NS					
Management									
Var x N x	x Man		45	1.10	NS				

Without Folicur

Table 5.64. Rosemaund Oil contents (% dry matter) effects of Folicur

		Conven	tional	Manage	d timing	Mean	
	N rate	Nil	Folicur	Nil	Folicur	Nil	Folicur
Winner	120 kg/ha	40.9	41.7	41.1	43.9	41.0	42.8
Winner	240 kg/ha	41.6	40.0	41.6	39.6	41.6	39.8
Castille	120 kg/ha	40.7	40.3	39.4	40.2	40.0	40.3
Castille	240 kg/ha	39.8	40.2	40.1	40.4	39.9	40.3
Mean		40.8	40.6	40.5	41.0	40.7	40.8
		SED	P-Value				
Folicur		0.443	NS				
Folicur x	Variety	0.626	NS				
Folicur x	N rate	0.626	< 0.05				
Folicur x	N timing	0.626	NS				
Folicur x	Var x N	0.885	< 0.05				
rate							

5.2.5 Optimum N rate

At Boxworth regression analysis showed that fitting parallel curves for each treatment combination accounted for the most variation between N rate and yield (30%, P<0.001). The economically optimum N rate before taking account of oil premiums was 61 kg N/ha for all treatments, and this decreased to 54 kg N/ha after accounting for oil content. At the optimum N rate Castille yielded 3.61 t/ha and Winner yielded 3.02 t/ha (Table 5.65). At the optimum N rate the Managed N timing increased yield of both varieties by 0.06 t/ha.

At High Mowthorpe regression analysis showed that fitting parallel curves for each treatment combination accounted for the most variation between N rate and yield (88%, P<0.001). The economically optimum N rate before taking account of oil premiums was 173 kg N/ha for all treatments, and this decreased to 156 kg N/ha after accounting for oil content. At the optimum N rate the yield of Castille 5.15 t/ha and the yield of Winner was 4.47 t/ha. At the optimum N rate the Managed N timing reduced the yield of Winner by 0.20 t/ha and had little effect on Castille. Folicur increased the yield of Winner by 0.12 t/ha at optimum N rate.

At Rosemaund regression analysis showed that fitting parallel curves for each treatment combination accounted for the most variation between N rate and yield (83%, P<0.001). The economically optimum N rate was 165 kg N/ha for all treatments irrespective of whether the oil content was included. At the optimum N rate the Castille yielded 5.06 t/ha and Winner yielded 4.76 t/ha. At optimum N rate

Folicur increased yield by 0.14 t/ha. There was no difference between the Managed and Conventional N timings.

Table 5.65. Optimum N rate and yields at N opt.

	Boxworth	High	Rosemaund
		Mowthorpe	
Economically optimum N rate (kg/ha)	54	156	165
Winner Conventional N timings	3.05	4.50	4.66
Winner Managed N timings	3.05	4.31	4.66
Winner Conventional N timings with Folicur	2.90	4.64	4.88
Winner Managed N timings with Folicur	3.06	4.42	4.84
Castille Conventional N timings	3.66	5.20	5.04
Castille Managed N timings	3.63	5.12	4.99
Castille Conventional N timings with Folicur	3.51	5.17	5.09
Castille Managed N timings with Folicur	3.63	5.10	5.11

5.2.6 Crop growth before stem extension

Crop assessments carried out before any N applications in February showed that the GAI, dry weight, tissue N concentration and N content of the crops did not differ between Winner and Castille at the 5% level of significance (Table 5.66). Regression analysis on the plot data for both varieties across all sites showed that the Rosemaund data differed from the data at the other two sites (Figure 5.2). The slope of the regression line showed that each crop contained about 40 kg N/ha for each unit of GAI at Boxworth and High Mowthorpe. At Rosemaund the crop contained only 30 kg N/ha for each unit of GAI. Previous studies have shown that the crop contains about 50 kg N/ha per unit of GAI.

Table 5.67. February measurements.

Boxworth

	GAI	Dry matter (t/ha)	N content (% of dry matter)	Crop N (kg/ha)
Minnor	2.52			99.4
Winner	2.53	2.80	3.55	
Castille	2.20	2.37	3.68	84.4
Mean	2.37	2.59	3.61	91.9
SED (df)	0.296	0.425	0.374	11.02
P-Value	NS	NS	NS	NS

High Mowthorpe

	GAI	Dry matter (t/ha)	N content (% of dry matter)	Crop N (kg/ha)
Minnor	1 25			
Winner	1.35	1.67	3.30	54.5
Castille	1.07	1.63	3.25	53.1
Mean	1.21	1.65	3.27	53.8
SED (df)	0.170	0.173	0.177	4.86
P-Value	NS	NS	NS	NS

Rosemaund

	GAI	Dry matter (t/ha)	N content (% of dry matter)	Crop N (kg/ha)
Winner	2.34	1.71	3.88	66.5
Castille	1.84	1.58	3.71	59.2
Mean	2.09	1.64	3.79	62.8
SED (df)	0.240	0.097	0.314	8.51
P-Value	NS	NS	NS	NS

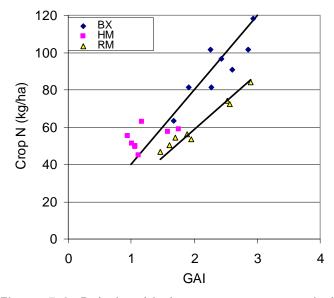


Figure 5.2. Relationship between green area index and crop nitrogen content measured in February at ADAS Boxworth, High Mowthorpe and Rosemaund. Best fit line for all sites: y = 36x; $R^2 = 0.61$; P < 0.001. Best fit line for Boxworth and Mowthorpe: y = 40x; $R^2 = 0.80$; P < 0.001. Best fit line for Rosemaund: y = 30x; $R^2 = 0.93$; P < 0.001.

5.2.7 Rainfall patterns

At Boxworth, the 1st and 2nd N applications were followed by significant rainfall events within a few days of the applications (Figure 5.3). The 3rd application followed about 7 days of dry weather which was then followed by a further 30 days without significant rainfall. It is therefore likely that the 3rd split was taken up more slowly than normal.

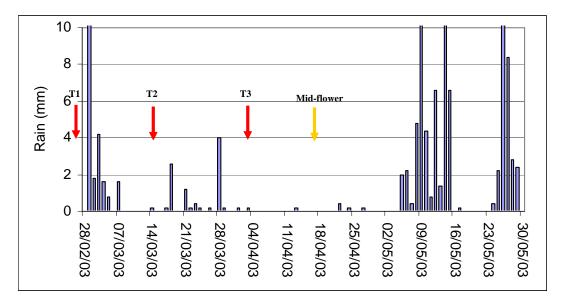


Figure 5.3. Boxworth rainfall, with dates of T1, T2 and T3 N applications.

At High Mowthorpe, rainfall around the time of the 1st application would have allowed the N from this split to be taken up normally. The 2nd split followed about 10 days of dry weather and was then followed by a further 36 days of dry weather when about 2mm of rain fell. The 3rd split followed about 24 days of dry weather and was then followed by a further 22 days in which about 2 mm fell. It is therefore probable that the N from both the 2nd and 3rd splits were taken up very slowly.

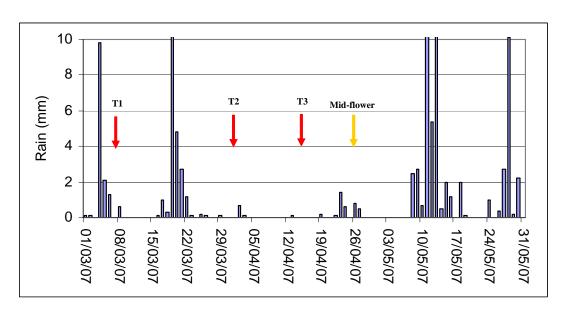


Figure 5.4. High Mowthorpe rainfall, with dates of T1, T2 and T3 N applications.

At Rosemaund, the 1st and 2nd N applications were close to significant rainfall events (Figure 5.5). The 3rd application followed about 19 days of dry weather which was then followed by a further 5 days before significant rainfall. It is therefore possible that the N from the 1st and 2nd splits would have been taken reasonably efficiently, but N uptake from the 3rd split would almost certainly have been delayed.

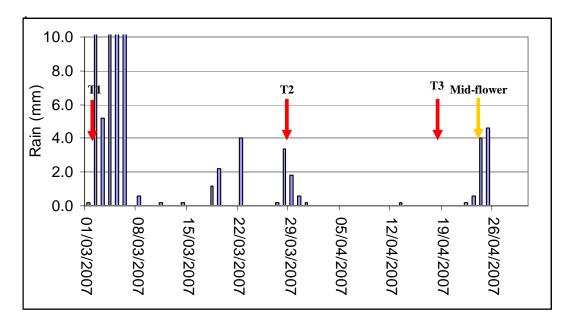


Figure 5.5. Rosemaund rainfall, with dates of T1, T2 and T3 N applications.

5.2.8 Mid-Flowering GAI and dry weight

At Boxworth, the nil N treatment had significantly lower GAI and dry weight than the 120 kg N/ha treatments (P<0.001; Table 5.67). At 120 kg N/ha, the Managed timings reduced the GAI from 5.12 to 4.49, and reduced stem dry weight, but these effects were not statistically significant. Castille had a smaller leaf GAI and flower dry weight than Winner (P = 0.07). The N content of the leaf and stem material for the Conventionally timed treatment at 120 kg N/ha averaged 3.7% and 1.5% respectively and there was no difference between Castille and Winner (Table 5.70). On average, the N uptake for this treatment was 178 kg N/ha.

At High Mowthorpe, the nil N treatment had lower GAI and dry weight than the 120 kg N/ha treatments (Table 5.68), but these effects were not statistically significant. At 120 kg N/ha, the Conventional and Managed timings had a similar GAI and dry weight. It is important to note that the GAI at 120 kg N/ha was 2.16 which was significantly below the GAI that would have been expected from this N rate. It seems likely that the dry weather between the end of March and early May restricted N uptake in both treatments. There was little difference between Castille and Winner for the GAI and dry matter. The N content of the leaf and stem material for the Conventionally timed treatment at 120 kg N/ha averaged 3.9% and 1.4% respectively and there was no difference between Castille and Winner (Table 5.71). On average N uptake of this treatment was 102 kg N/ha.

At Rosemaund, the nil N treatment had significantly lower GAI than the 120 kg N/ha treatments (P<0.05; Table 5.69). There was little difference in dry weight between the nil and 120 kg N/ha treatments. At 120 kg N/ha, the Managed timings significantly reduced the total GAI from 4.35 to 3.12 (P<0.05). This effect was mainly caused by reducing the leaf GAI from 3.30 to 2.27 (P<0.05). Castille had a significantly smaller leaf GAI, total GAI and pod dry weight compared with Winner (P<0.05). The variety effects on GAI were consistent with the variety effects at Boxworth. The N content of the leaf, stem and pod material for the Conventionally timed treatment at 120 kg N/ha averaged 3.8%, 1.3% and 4.4% respectively (Table 5.72). Castille had a significantly greater leaf N% and a significantly lower stem N% compared with Winner. On average, the N uptake of this treatment was 142 kg N/ha.

Table 5.67. Boxworth. Mid flowering green area indices and dry matter measurements.

		Green a	rea indices		Dry w	/eight (t/ha)		
	kg/ha N	Leaf	Stem	Total	Leaf	Stem	Flower	Total
Winner	0	2.53	0.69	3.23	1.79	5.28	0.73	7.80
	120 conv	4.05	0.92	5.00	2.51	6.42	1.11	10.05
	120 mngd	3.80	0.90	4.72	2.20	5.93	0.95	9.08
Castille	0	1.97	0.72	2.70	1.58	5.07	0.72	7.37
	120 conv	3.81	1.42	5.23	2.43	5.33	0.76	8.52
	120 mngd	3.41	0.85	4.27	2.17	5.06	0.86	8.09
<u>Means</u>								
Winner		3.46	0.84	4.32	2.17	5.88	0.93	8.98
Castille		3.06	1.00	4.06	2.06	5.15	0.78	7.99
Nil N		2.25	0.71	2.97	1.69	5.17	0.73	7.59
120 kg/ha N c	conventional	3.93	1.17	5.12	2.47	5.88	0.94	9.28
120 kg/ha N r	nanaged	3.61	0.88	4.49	2.19	5.49	0.91	8.58
<u>P-Value</u>								
Variety		0.07	NS	NS	NS	NS	0.07	NS
Nitrogen		< 0.001	NS	< 0.001	0.005	NS	NS	NS
Var x N		NS	NS	NS	NS	NS	NS	NS
SED (15 df)								
Variety		0.208	0.173	0.301	0.166	0.463	0.079	0.670
Nitrogen		0.254	0.212	0.369	0.203	0.566	0.096	0.821
Var x N		0.360	0.299	0.522	0.287	0.801	0.136	1.161

Table 5.68. High Mowthorpe. Mid flowering green area indices and dry matter measurements.

		Green	area indices		Dry w	eight (t/ha)		
	kg/ha N	Leaf	Stem	Total	Leaf	Stem	Flower	Total
Winner	0	1.12	0.55	1.66	0.97	3.69	0.80	5.46
	120 conv	1.34	0.68	2.01	0.97	4.27	1.09	6.33
	120 mngd	1.45	0.62	2.07	1.09	4.06	1.01	6.16
Castille	0	1.29	0.68	1.97	0.93	4.30	1.10	6.32
	120 conv	1.69	0.63	2.31	1.27	4.04	1.06	6.37
	120 mngd	1.58	0.69	2.27	1.15	4.27	1.19	6.60
<u>Means</u>								
Winner		1.30	0.61	1.92	1.01	4.00	0.97	5.98
Castille		1.52	0.67	2.19	1.11	4.20	1.12	6.43
Nil N		1.21	0.61	1.82	0.95	3.99	0.95	5.89
120 kg/ha N co	onventional	1.51	0.65	2.16	1.12	4.15	1.08	6.35
120 kg/ha N m	nanaged	1.52	0.66	2.17	1.12	4.16	1.10	6.38
P-Value								
Variety		NS	NS	NS	NS	NS	NS	NS
Nitrogen		NS	NS	NS	NS	NS	NS	NS
Var x N		NS	NS	NS	NS	NS	NS	NS
SED (15 df)								
Variety		0.219	0.048	0.247	0.137	0.243	0.082	0.385
Nitrogen		0.268	0.059	0.302	0.167	0.298	0.100	0.472
Var x N		0.379	0.083	0.427	0.237	0.421	0.141	0.667

Table 5.69. Rosemaund. Mid flowering green area indices and dry matter measurements.

-		Green	area indice	25		Drv w	/eight (t/ha)		
	kg/ha N	Leaf	Stem	Pod	Total	Leaf	Stem	Pod	Flower	Total
Winner	0	1.93	0.60	0.14	2.66	1.05	4.52	0.57	0.22	6.71
	120 conv	3.64	0.91	0.11	4.65	1.46	4.85	0.46	0.38	7.16
	120 mngd	2.75	0.84	0.12	3.71	1.20	4.60	0.44	0.29	6.53
Castille	0	1.11	0.64	0.20	1.94	0.76	4.25	0.36	0.22	6.21
	120 conv	2.96	0.99	0.10	4.05	1.30	4.92	0.42	0.37	6.33
	120 mngd	1.80	0.70	0.04	2.53	0.98	3.79	0.24	0.20	5.21
<u>Means</u>										
Winner		2.77	0.78	0.12	3.67	1.24	4.66	0.49	0.30	6.80
Castille		1.95	0.78	0.11	2.84	1.02	4.32	0.34	0.26	5.92
Nil N		1.52	0.62	0.17	2.30	0.91	4.39	0.47	0.22	6.46
120 kg/ha N c	onventional	3.30	0.95	0.10	4.35	1.38	4.89	0.44	0.37	6.75
120 kg/ha N n		2.27	0.77	0.08	3.12	1.09	4.19	0.34	0.25	5.87
<u>P-Value</u>										
Variety		0.030	NS	NS	0.05	NS	NS	0.008	NS	NS
Nitrogen		0.003	0.001	NS	0.003	0.02	NS	NS	< 0.001	NS
Var x N		NS	NS	NS	NS	NS	NS	NS	NS	NS
SED (10-14 df	<u>-</u>									
Variety		0.339	0.056	0.033	0.387	0.120	0.407	0.048	0.021	0.508
Nitrogen		0.415	0.070	0.040	0.474	0.147	0.498	0.059	0.026	0.622
Var x N		0.587	0.098	0.056	0.670	0.207	0.705	0.083	0.037	0.880

Table 5.70. Boxworth. Mid flowering measurement of nitrogen concentration in dry plant material on Treatment 3 without Folicur.

	N% Leaf	N% Stem	Crop N (kg/ha)
Winner	3.67	1.43	184
Castille	3.69	1.53	171
Mean	3.68	1.48	178
SED (3 df)	0.351	0.182	10.31
P-Value	NS	NS	NS

Table 5.71. High Mowthorpe. Mid flowering measurement of nitrogen concentration in dry plant material on Treatment 3 without Folicur.

	N% Leaf	N% Stem	Crop N (kg/ha)
Winner	3.69	1.34	93
Castille	4.08	1.45	110
Mean	3.89	1.39	102
SED (3 df)	0.193	0.101	16.08
P-Value	NS	NS	NS

Table 5.72. Rosemaund. Mid flowering measurement of nitrogen concentration in dry plant material on Treatment 3 without Folicur.

	N% Leaf	N% Stem	N% Pod	Crop N (kg/ha)
Winner	3.54	1.07	4.31	142
Castille	4.01	1.45	4.40	142
Mean	3.77	1.26	4.36	142
SED (3 df)	0.128	0.088	0.113	15.54
P-Value	0.03	0.05	NS	NS

5.2.9 Light interception at flowering

At Boxworth across all treatments, the Managed timings significantly reduced the amount of light intercepted by the whole canopy from 87% to 81% (P<0.05; Table 5.74). Unexpectedly the Managed timings increased the amount of light intercepted by the flowering layer for Castille and had no effect on Winner (Table 5.73). The whole canopy of Winner intercepted 88% of light compared with 80% for Castille (P<0.05). The flower layer of Castille intercepted more light than the flower layer of Winner (P<0.05; Table 5.73). Folicur did not affect light interception.

At High Mowthorpe, the Managed timings reduced the amount of light reflected from the flowers from 12.5% to 11.4% (P<0.001; Table 5.73). The effects were greater at the higher N rates, e.g. at 360 kg N/ha the Management timing reduced the amount of light reflected from 13.2% to 11.9% for Castille. The Managed timings also reduced the amount of light intercepted by the flower layer from 79% to 73% (P<0.001; Table 5.74). These effects were greater for high N rates, e.g. at 240 kg N/ha the Managed

timing reduced the light intercepted by the flower layer from 88% to 77%. The Managed timings also reduced the amount of light intercepted by the whole canopy (P<0.001; Table 5.75). Increasing N rate significantly increased the amount of light reflected and intercepted by the flower layer and whole canopy (P<0.05). Winner reflected 11.4% light compared with 12.5% of light for Castille (P<0.001; Table 5.73). Variety had no effect on the amount of light intercepted by the flower layer and the whole canopy. Folicur reduced light reflection from 12.4% to 11.5% (NS) and did not affect the amount of light intercepted by the flower layer or the whole canopy.

Table 5.73. Boxworth. Fraction of light interception at base of flower canopy

Variety	N rate kg/ha	No Fol Conv	icur CM	Mean	Folicur Conv	(1.0 l/h CM	na) Mean	Conv Mean	CM Mean	Grand Mean
	Rg/Tid	COITV	OIVI	Mean	CONV	OIVI	Mean	Wicarr	Mean	Mean
Winner Winner Winner Winner Winner	0 120 240 360 Mean	0.66 0.74 0.83 0.73 0.74	0.72 0.80 0.70 0.72	0.66 0.73 0.82 0.72 0.73	0.65 0.71 0.82 0.70 0.72	0.71 0.81 0.69 0.72	0.65 0.71 0.82 0.69 0.72	0.66 0.72 0.82 0.72 0.73	0.72 0.81 0.69 0.72	0.66 0.72 0.82 0.70 0.72
Castille Castille Castille Castille Castille	0 120 240 360 Mean	0.75 0.68 0.65 0.78 0.72	0.88 0.78 0.79 0.80	0.75 0.78 0.72 0.79 0.76	0.88 0.70 0.67 0.78 0.75	0.88 0.81 0.78 0.84	0.88 0.79 0.74 0.78 0.80	0.81 0.69 0.66 0.78 0.73	0.88 0.79 0.79 0.82	0.81 0.79 0.73 0.78 0.78
Win+Cas Win+Cas Win+Cas Win+Cas Win+Cas	0 120 240 360 Mean	0.70 0.71 0.74 0.76 0.73	0.80 0.79 0.75 0.76	0.70 0.76 0.77 0.75 0.74	0.76 0.70 0.74 0.74 0.74	0.80 0.81 0.73 0.78	0.76 0.75 0.78 0.74 0.76	0.73 0.70 0.74 0.75 0.73	0.80 0.80 0.74 0.77	0.73 0.75 0.77 0.74 0.75
Treatment			df	SED	P-Valu	е				
Folicur Variety Folicur x V N rate N Manager Var x Nrate Var x Man Nrate x Ma Var x Nrate Fol x Nrate Fol x War x Fol x Var x Fol x Var x Fol x Var x Fol x Var x	ment e an e x Man e Nrate Man e x Man e x Man	Man	3 90 62 90 90 90 90 90 91 62 93 91 93 92	0.010 0.024 0.026 0.034 0.024 0.047 0.034 0.047 0.067 0.042 0.064 0.042 0.064 0.092	NS 0.026 NS NS 0.004 0.047 NS NS NS NS NS					

Table 5.74. Boxworth. Fraction of light interception at ground level.

Variety	N rate	No Fol	icur		Folicur	(1.0 l/h	na)	Conv	CM	Grand
,	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	0.88		0.88	0.85		0.85	0.86		0.86
Winner	120	0.92	0.91	0.91	0.89	0.90	0.90	0.91	0.90	0.90
Winner	240	0.84	0.82	0.83	0.82	0.80	0.81	0.83	0.81	0.82
Winner	360	0.95	0.90	0.93	0.93	0.92	0.92	0.94	0.91	0.92
Winner	Mean	0.90	0.88	0.89	0.87	0.87	0.87	0.88	0.87	0.88
Castille	0	0.70		0.70	0.78		0.78	0.74		0.74
Castille	120	0.92	0.68	0.80	0.91	0.69	0.80	0.92	0.68	0.80
Castille	240	0.91	0.77	0.84	0.92	0.76	0.84	0.91	0.77	0.84
Castille	360	0.81	0.81	0.81	0.83	0.80	0.81	0.82	0.80	0.81
Castille	Mean	0.84	0.74	0.79	0.86	0.76	0.81	0.85	0.75	0.80
Win+Cas	0	0.79		0.79	0.82		0.82	0.80		0.80
Win+Cas	120	0.92	0.79	0.86	0.90	0.79	0.85	0.91	0.79	0.85
Win+Cas	240	0.87	0.80	0.83	0.87	0.78	0.82	0.87	0.79	0.83
Win+Cas	360	0.88	0.86	0.87	0.88	0.86	0.87	0.88	0.86	0.87
Win+Cas	Mean	0.87	0.81	0.84	0.87	0.81	0.84	0.87	0.81	0.84
Treatment			df	SED	P-Valu	е				
Folicur			3	0.017	NS					
Variety			90	0.026	0.003					
Folicur x Va	ariety		29	0.031	NS					
N rate			90	0.037	NS					
N Managen	nent		90	0.026	0.034					
Var x Nrate	9		90	0.052	NS					
Var x Man			90	0.037	0.097					
Nrate x Ma			90	0.052	NS					
Var x Nrate			90	0.074	NS					
Fol x Nrate	!		74	0.048	NS					
Fol x Man			29	0.031	NS					
Fol x Var x			91	0.071	NS					
Fol x Var x			74	0.048	NS					
Fol x Nrate			91	0.071	NS					
Fol x Var x	Nrate x	Man	93	0.102	NS					

Table 5.75. High Mowthorpe. Fraction of light reflected at mid flowering

		1			ı			ı		
Variety	N rate	No Foli				(1.0 l/h		Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	0.111		0.111	0.104		0.104	0.108		0.108
Winner	120	0.120	0.112	0.116	0.116	0.109	0.112	0.118	0.110	0.114
Winner	240	0.123	0.114	0.119	0.123	0.107	0.115	0.123	0.110	0.117
Winner	360	0.129	0.121	0.125	0.118	0.103	0.110	0.123	0.112	0.118
Winner	Mean	0.121	0.114	0.118	0.115	0.106	0.110	0.118	0.110	0.114
0 +!!! -	0	0.400		0.400	0.110		0.110	0.404		0.104
Castille	0	0.129	0.405	0.129	0.119	0 111	0.119	0.124	0.100	0.124
Castille	120	0.137	0.125	0.131	0.125	0.114	0.120	0.131	0.120	0.125
Castille	240	0.136	0.120	0.128	0.130	0.113	0.121	0.133	0.117	0.125
Castille	360	0.144	0.124	0.134	0.132	0.104	0.118	0.138	0.114	0.126
Castille	Mean	0.137	0.125	0.131	0.127	0.113	0.120	0.132	0.119	0.125
Win+Cas	0	0.120		0.120	0.112		0.112	0.116		0.116
Win+Cas Win+Cas	120	0.120	0.118	0.120	0.112	0.112	0.112	0.116	0.115	0.110
Win+Cas Win+Cas	240	0.128	0.118	0.123	0.121	0.112	0.118	0.124	0.113	0.120
Win+Cas Win+Cas	360	0.129	0.117	0.123	0.126	0.110	0.118	0.128	0.114	0.121
Win+Cas Win+Cas	Mean	0.130	0.122	0.129	0.123	0.104	0.114	0.131	0.113	0.122
WIII+Cas	Mean	0.129	0.120	0.124	0.121	0.109	0.115	0.125	0.114	0.120
Treatment			df	SED	P-Val	ue				
Folicur			3	0.0048	B NS					
Variety			90	0.0013) 1				
Folicur x Va	ariety		3	0.0050		<i>.</i>				
N rate	anoty		90	0.0018		0.013				
N Managen	nent		90	0.0013		0.001				
Var x Nrate			90	0.0026		0.076				
Var x Man			90	0.0018		0.063				
Nrate x Ma	n		90	0.0026		0.001				
Var x Nrate			90	0.0037						
Fol x Nrate			4	0.0053		0.062				
Fol x Man			3	0.0050		-				
Fol x Var x	Nrate		7	0.0059						
Fol x Var x			4	0.0053						
Fol x Nrate			7	0.0059						
Fol x Var x		Man	13	0.0070						
. J. A. Lai A	a.to /t			3.0070						

Table 5.76. Mowthorpe. Fraction of light interception at base of flower canopy

Variety	N rate	No Foli	cur		Folicur	(1.0 l/h	ıa)	Conv	CM	Grand
variety	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
	Ng/Tia	00111	0.01	Mouri	00111	0.01	Mouri	Widaii	Modif	mouri
Winner	0	0.593		0.593	0.609		0.609	0.601		0.601
Winner	120	0.825	0.745	0.785	0.802	0.775	0.789	0.814	0.760	0.787
Winner	240	0.870	0.743	0.806	0.868	0.765	0.817	0.869	0.754	0.812
Winner	360	0.869	0.795	0.832	0.892	0.791	0.842	0.881	0.793	0.837
Winner	Mean	0.789	0.719	0.754	0.793	0.735	0.764	0.791	0.727	0.759
Castille	0	0.628		0.628	0.590		0.590	0.609		0.609
Castille	120	0.860	0.747	0.803	0.827	0.728	0.777	0.843	0.737	0.790
Castille	240	0.889	0.811	0.850	0.881	0.776	0.828	0.885	0.794	0.839
Castille	360	0.872	0.767	0.819	0.845	0.779	0.812	0.858	0.773	0.816
Castille	Mean	0.812	0.738	0.775	0.786	0.718	0.752	0.799	0.728	0.764
Win+Cas	0	0.610		0.610	0.600		0.600	0.605		0.605
Win+Cas	120	0.843	0.746	0.794	0.815	0.751	0.783	0.829	0.748	0.789
Win+Cas	240	0.880	0.777	0.828	0.875	0.771	0.823	0.877	0.774	0.825
Win+Cas	360	0.870	0.781	0.826	0.869	0.785	0.827	0.870	0.783	0.826
Win+Cas	Mean	0.801	0.729	0.765	0.789	0.727	0.758	0.795	0.728	0.761
Treatment			df	SED	P-Val	ue				
				022		.				
Folicur			3	0.0135	NS					
Variety			90	0.0099	NS NS					
Folicur x Va	ariety		7	0.0168	3 (0.096				
N rate			90	0.0140		0.001				
N Manager			90	0.0099		0.001				
Var x Nrate	9		90	0.0198						
Var x Man			90	0.0140						
Nrate x Ma			90	0.0198		0.002				
Var x Nrate			90	0.0280						
Fol x Nrate	!		19	0.0218						
Fol x Man			7	0.0168						
Fol x Var x			46	0.0295						
Fol x Var x			19	0.0218						
Fol x Nrate			46	0.0295						
Fol x Var x	Nrate x	Man	78	0.0406	NS NS					

Table 5.77. Mowthorpe. Fraction of light interception at ground level

Variety	N rate	No Fol			Folicur	(1.0 l/ha		Conv	СМ	Grand
	kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Mean	Mean	Mean
14/:000	0	0.004		0.004	0.047		0.047	0.000		0.000
Winner	0	0.831	0.000	0.831	0.847	0.055	0.847	0.839	0.044	0.839
Winner	120	0.955	0.932	0.944	0.951	0.955	0.953	0.953	0.944	0.948
Winner Winner	240 360	0.970	0.927	0.948	0.974	0.937	0.955	0.972	0.932	0.952
Winner		0.979	0.949	0.964	0.973	0.949	0.961	0.976	0.949	0.963
vviririei	Mean	0.934	0.910	0.922	0.936	0.922	0.929	0.935	0.916	0.925
Castille	0	0.818		0.818	0.816		0.816	0.817		0.817
Castille	120	0.956	0.923	0.940	0.946	0.921	0.933	0.951	0.922	0.937
Castille	240	0.979	0.949	0.964	0.969	0.939	0.954	0.974	0.944	0.959
Castille	360	0.977	0.926	0.952	0.976	0.916	0.946	0.976	0.921	0.949
Castille	Mean	0.933	0.904	0.918	0.927	0.898	0.912	0.930	0.901	0.915
Win+Cas	0	0.824		0.824	0.832		0.832	0.828		0.828
Win+Cas	120	0.956	0.928	0.942	0.948	0.938	0.943	0.952	0.933	0.943
Win+Cas	240	0.974	0.938	0.956	0.971	0.938	0.954	0.972	0.938	0.955
Win+Cas	360	0.978	0.938	0.958	0.974	0.932	0.953	0.976	0.935	0.956
Win+Cas	Mean	0.933	0.907	0.920	0.931	0.910	0.921	0.932	0.908	0.920
Treatment			df	SED	P-Va	lue				
Folicur			3	0.0106	NS					
Variety			90	0.0055		0.070				
Folicur x V	arietv		5	0.0119		3.0.0				
N rate			90	0.0078)1				
N Manager	ment		90	0.0055						
Var x Nrate			90	0.0110						
Var x Man			90	0.0078	NS					
Nrate x Ma	n		90	0.0110	(0.045				
Var x Nrate	x Man		90	0.0156	NS					
Fol x Nrate			10	0.0143						
Fol x Man			5	0.0119						
Fol x Var x			23	0.0180						
Fol x Var x			10	0.0143						
Fol x Nrate			23	0.0180						
Fol x Var x	Nrate x I	Man	50	0.0239	NS					

5.2.10 Crop height at the end of flowering

At Boxworth, the Canopy Managed timings reduced the crop height of the 120 and 240 N rates by 4 cm and 6 cm respectively, and no effect was observed at 360 kg N/ha (P<0.05; Table 5.78). The Managed timings significantly reduced the height to the base of the flowers by 4 cm across all N rates (P<0.001; Table 5.79). Increasing N rate from 0 to 360 kg N/ha reduced crop height by about 2 cm (P<0.001). There was no evidence that this unexpected effect resulted from lodging. N rate did not affect the height to the base of the flower layer. The N rate and Folicur treatments interacted (P<0.05). Folicur reduced height by 4 cm at 0 kg/ha, 0 cm at 120 kg/ha, 3 cm at 240 kg/ha and 5 cm at 360 kg/ha. Castille was 21 cm shorter than Winner (P<0.001).

At High Mowthorpe, the Managed timings reduced the crop height by 4 cm (P<0.001; Table 5.80). Increasing N rate from 0 to 360 kg/ha increased height by 2.5 cm (P<0.001). The N rate and Folicur treatments interacted (P<0.05). Folicur reduced height by 0 cm at 0 kg/ha, 3 cm at 120 kg/ha, 5 cm at 240 kg/ha and 8 cm at 360 kg/ha (Table 5.80). Castille was 10 cm shorter than Winner (P<0.001).

At Rosemaund, the Managed timings reduced the crop height by 4 cm (P<0.001; Table 5.82). This effect was due to a reduction in the height to the base of the flowering layer (Table 5.83). N rate did not significantly affect crop height. Folicur shortened crop height by 3 cm (Table 5.82) and height to the base of the flowering layer by 5 cm (Table 5.83), but these effects were not statistically significant. Castille was 9 cm shorter than Winner (P<0.001). About half of the varietal effect came from shortening the height to the base of the flower layer (Table 5.83).

Table 5.78. Boxworth. Height (cm) to the top of the flowers.

Variety	N rate	No Foli	cur		Folicur	(1.0 l/h	a)	Conv	CM	Grand
ran.oty	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	164.2		164.2	157.5		157.5	160.8		160.8
Winner	120	160.2	155.2	157.7	158.5	156.5	157.5	159.4	155.8	157.6
Winner	240	162.1	157.8	159.9	160.2	154.6	157.4	161.2	156.2	158.7
Winner	360	157.1	160.4	158.8	155.0	158.1	156.6	156.0	159.3	157.7
Winner	Mean	160.9	159.4	160.1	157.8	156.7	157.2	159.4	158.0	158.7
Castille	0	139.6		139.6	137.5		137.5	138.5		138.5
Castille	120	140.4	135.8	138.1	140.8	137.9	139.4	140.6	136.9	138.8
Castille	240	143.5	134.2	138.9	139.6	133.3	136.5	141.6	133.8	137.7
Castille	360	142.3	140.4	141.4	135.4	131.9	133.7	138.9	136.2	137.5
Castille	Mean	141.5	137.5	139.5	138.3	135.2	136.7	139.9	136.3	138.1
\\/:\- \ C = 0	0	151.0		151.0	1 4 7 5		1 4 7 5	140.7		140.7
Win+Cas Win+Cas	0 120	151.9	145.5	151.9 147.9	147.5 149.7	147.2	147.5 148.4	149.7 150.0	146.4	149.7 148.2
Win+Cas Win+Cas	240	150.3 152.8	145.5	147.9	149.7	147.2	146.4	150.0	145.4	148.2
Win+Cas Win+Cas	360	149.7	150.4	150.1	149.9	144.0	146.9	147.5	145.0	146.2
Win+Cas Win+Cas	Mean	151.2	148.4	149.8	143.2	145.0	145.1	147.5	147.7	147.0
WIII+Cas	Mean	131.2	140.4	147.0	140.1	143.7	147.0	147.0	147.2	140.4
Treatment			df	SED	P-Val	lue				
Folicur			3	2.20	NS					
Variety			90	0.71	<0.0	01				
Folicur x Va	ariety		4	2.31	NS	01				
N rate	arioty		90	1.00	<0.0	01				
N Managen	nent		90	0.71	NS	0 1				
Var x Nrate			90	1.42	NS					
Var x Man			90	1.00	NS					
Nrate x Ma	n		90	1.42		0.003				
Var x Nrate			90	2.00	NS					
Fol x Nrate	<u> </u>		5	2.52	(0.033				
Fol x Man			4	2.31	NS					
Fol x Var x	Nrate		9	2.89		0.090				
Fol x Var x	Man		5	2.52	NS					
Fol x Nrate	x Man		9	2.89	NS					
Fol x Var x	Nrate x	Man	18	3.52	NS					

Table 5.79. Boxworth. Height (cm) to the base of the flowers.

Variety	N rate	No Foli	cur		Folicur	(1.0 l/h	ıa)	Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
	<u> </u>									
Winner	0	114.0		114.0	110.6		110.6	112.3		112.3
Winner	120	114.4	112.3	113.3	113.3	112.5	112.9	113.9	112.4	113.1
Winner	240	115.6	112.3	114.0	115.4	109.8	112.6	115.5	111.0	113.3
Winner	360	113.5	108.3	110.9	114.8	112.3	113.5	114.2	110.3	112.2
Winner	Mean	114.4	111.7	113.1	113.5	111.3	112.4	114.0	111.5	112.7
Castille	0	99.0		99.0	99.4		99.4	99.2		99.2
Castille	120	102.7	95.00	98.9	104.2	99.6	101.9	103.4	97.3	100.4
Castille	240	107.5	95.2	101.4	105.6	95.4	100.5	106.6	95.3	100.9
Castille	360	107.7	101.5	104.6	101.3	97.5	99.4	104.5	99.5	102.0
Castille	Mean	104.2	97.7	100.9	102.6	98.0	100.3	103.4	97.8	100.6
\ <i>\\'</i> ! O	0	10/ 5		10/ 5	105.0		105.0	105.7		105.7
Win+Cas	0	106.5	100.7	106.5	105.0	10/ 0	105.0	105.7	1040	105.7
Win+Cas	120	108.5	103.7	106.1	108.8	106.0	107.4	108.7	104.8	106.7
Win+Cas	240	111.6	103.8	107.7 107.8	110.5	102.6	106.6	111.0	103.2	107.1
Win+Cas Win+Cas	360 Mean	110.6 109.3	104.9 104.7	107.8	108.0 108.1	104.9 104.6	106.5 106.4	109.3 108.7	104.9 104.7	107.1 106.7
WIII+CaS	Mean	109.3	104.7	107.0	106.1	104.6	106.4	106.7	104.7	106.7
Treatment			df	SED	P-Val	ue				
Folicur			2	1.70	NS					
Variety			3 90	0.70	< 0.00	1 1				
Folicur x Va	arioty		4	1.84	NS	<i>J</i> 1				
N rate	ariety		90	0.99	NS					
N Managen	nent		90	0.70	< 0.00	1				
Var x Nrate			90	1.40	NS	<i>3</i> 1				
Var x Man	•		90	0.99		0.027				
Nrate x Ma	n		90	1.40		0.002				
Var x Nrate			90	1.98	NS	J.002				
Fol x Nrate			7	2.09	NS					
Fol x Man			4	1.84	NS					
Fol x Var x	Nrate		14	2.51		0.014				
Fol x Var x			7	2.09	NS					
Fol x Nrate	x Man		14	2.51	NS					
Fol x Var x	Nrate x	Man	31	3.20	NS					

Table 5.80. High Mowthorpe. Height (cm) to the top of the flowers.

Variety	N rate	No Foli	cur		Folicur	(1.0 l/h	a)	Conv	CM	Grand
· a o.t.j	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	135.0		135.0	135.7		135.7	135.4		135.4
Winner	120	138.8	134.0	136.4	137.5	131.5	134.5	138.2	132.8	135.5
Winner	240	141.4	135.7	138.5	139.1	129.6	134.3	140.2	132.6	136.4
Winner	360	142.6	136.8	139.7	136.8	131.7	134.3	139.7	134.3	137.0
Winner	Mean	139.5	135.4	137.4	137.3	132.1	134.7	138.4	133.7	136.1
Castille	0	124.0		124.0	124.6		124.6	124.3		124.3
Castille	120	131.6	123.8	127.7	125.2	121.8	123.5	128.4	122.8	125.6
Castille	240	136.3	131.2	133.7	126.0	121.7	123.9	131.2	126.4	128.8
Castille	360	133.4	131.5	132.4	126.7	118.8	122.8	130.0	125.2	127.6
Castille	Mean	131.3	127.6	129.5	125.6	121.7	123.7	128.5	124.7	126.6
Win+Cas	0	129.5		129.5	130.2		130.2	129.8		129.8
Win+Cas	120	135.2	128.9	132.1	131.4	126.7	129.0	133.3	127.8	130.5
Win+Cas	240	138.8	133.4	136.1	132.6	125.6	129.1	135.7	129.5	132.6
Win+Cas	360	138.0	134.2	136.1	131.8	125.3	128.5	134.9	129.7	132.3
Win+Cas	Mean	135.4	131.5	133.4	131.5	126.9	129.2	133.4	129.2	131.3
Treatment			df	SED	P-Val	ue				
- u			0	0.40	NO					
Folicur			3	3.10	NS	31				
Variety	oriot.		90	0.99	<0.00	וו				
Folicur x Va N rate	ariety		4 90	3.25 1.40	NS NS					
	nont		90	0.99	< 0.00	11				
N Managen Var x Nrate			90	1.98	NS	<i>)</i>				
Var x Man	-		90	1.40	NS					
Nrate x Ma	n		90	1.98	NS					
Var x Nrate			90	2.08	NS					
Fol x Nrate			5	3.54		0.014				
Fol x Man			4	3.25	NS					
Fol x Var x	Nrate		9	4.06	NS					
Fol x Var x			5	3.54	NS					
Fol x Nrate			9	4.06	NS					
Fol x Var x	Nrate x	Man	18	4.93	NS					

Table 5.81. High Mowthorpe. Height (cm) to the base of the flowers.

Variety	N rate	No Fol				1.0 l/l		Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	76.7		76.7	72.3		72.3	74.5		74.5
Winner	120	68.5	66.9	67.7	70.1	68.5	69.3	69.3	67.7	68.5
Winner	240	67.3	64.8	66.0	65.5	67.4	66.5	66.4	66.1	66.2
Winner	360	69.1	63.5	66.3	71.8	65.8	68.8	70.4	64.6	67.5
Winner	Mean	70.4	68.0	69.2	69.9	68.5	69.2	70.2	68.2	69.2
Castille	0	72.4		72.4	69.8		69.8	71.1		71.1
Castille	120	65.0	66.5	65.8	60.1	59.0	59.6	62.6	62.8	62.7
Castille	240	63.2	66.5	64.9	60.6	64.1	62.4	61.9	65.3	63.6
Castille	360	65.9	67.3	66.6	62.7	56.1	59.4	64.3	61.7	63.0
Castille	Mean	66.6	68.2	67.4	63.3	62.3	63.8	65.0	65.2	65.1
Win+Cas	0	74.5		74.5	71.0		71.0	72.8		72.8
Win+Cas	120	66.8	66.7	66.7	65.1	63.8	64.5	65.9	65.2	65.6
Win+Cas	240	65.2	65.7	65.4	63.1	65.8	64.4	64.2	65.7	64.9
Win+Cas	360	67.5	65.4	66.4	67.3	60.9	64.1	67.4	63.1	65.3
Win+Cas	Mean	68.5	68.1	68.3	66.6	65.4	66.0	67.6	66.7	67.1
Treatment			df	SED	P-Va	lue				
Folicur			3	1.60	NS					
Variety			90	0.82	<0.0	01				
Folicur x Va	arietv		5	1.80		0.005				
N rate			90	1.16	<0.0					
N Managen	nent		90	0.82	NS					
Var x Nrate			90	1.64	NS					
Var x Man			90	1.16	NS					
Nrate x Ma	n		90	1.64		0.090				
Var x Nrate	e x Man		90	2.32	NS					
Fol x Nrate			9	2.14	NS					
Fol x Man			5	1.80	NS					
Fol x Var x	Nrate		22	2.70		0.068				
Fol x Var x			9	2.14	NS					
Fol x Nrate			22	2.70	NS					
Fol x Var x		Man	48	3.56	NS					

Table 5.82. Rosemaund. Height (cm) to the top of the flowers.

Variety	N rate	No Foli	cur		Folicur	(1.0 l/h	ıa)	Conv	CM	Grand
· a o.t.j	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	154.5		154.5	148.8		148.8	151.6		151.6
Winner	120	154.3	149.8	152.0	149.9	138.7	144.3	152.1	144.3	148.2
Winner	240	153.5	149.4	151.5	156.5	145.6	151.0	155.0	147.5	151.3
Winner	360	152.2	143.8	148.0	148.8	147.5	148.1	150.5	145.7	148.1
Winner	Mean	153.6	149.4	151.5	151.0	145.1	148.1	152.3	147.3	149.8
Castille	0	140.7		140.7	140.7		140.7	140.7		140.7
Castille	120	142.5	140.1	141.3	142.3	135.3	138.8	142.4	137.7	140.0
Castille	240	142.3	137.8	140.0	140.3	136.4	138.4	141.3	137.1	139.2
Castille	360	147.8	147.3	147.5	142.8	138.8	140.8	145.3	143.0	144.2
Castille	Mean	143.3	141.5	142.4	141.5	137.8	139.6	142.4	139.6	141.0
Win+Cas	0	147.6		147.6	144.7		144.7	146.2		146.2
Win+Cas	120	148.4	145.0	146.7	146.1	137.0	141.5	147.2	141.0	144.1
Win+Cas	240	147.9	143.6	145.7	148.4	141.0	144.7	148.2	142.3	145.2
Win+Cas	360	150.0	145.6	147.8	145.8	143.1	144.4	147.9	144.4	146.1
Win+Cas	Mean	148.5	145.4	146.9	146.2	141.5	143.8	147.3	143.4	145.4
Tractmant			df	CED	D. Val					
Treatment			ui	SED	P-Val	ue				
Folicur			3	2.19	NS					
Variety			30	1.10	< 0.00	01				
Folicur x Va	ariety		2	2.45	NS					
N rate	,		30	1.56	NS					
N Managen	nent		30	1.10	C	0.001				
Var x Nrate			30	2.20	C	0.062				
Var x Man			30	1.56	NS					
Nrate x Ma	n		30	2.20	NS					
Var x Nrate	e x Man		30	3.11	NS					
Fol x Nrate	!		3	2.90	NS					
Fol x Man			2	2.45	NS					
Fol x Var x	Nrate		7	3.64	NS					
Fol x Var x	Man		3	2.90	NS					
Fol x Nrate	x Man		7	3.64	NS					
Fol x Var x	Nrate x	Man	16	4.79	NS					

Table 5.83. Rosemaund. Height (cm) to the base of the flowers.

Variety	N rate	No Fol	icur		Folicur	(1.0 /	na)	Conv	CM	Grand
3	kg/ha	Conv	CM	Mean	Conv	`CM	Mean	Mean	Mean	Mean
Winner	0	94.4		94.4	90.0		90.0	92.2		92.2
Winner	120	99.7	91.2	95.4	93.7	85.0	89.3	96.7	88.1	92.4
Winner	240	91.7	93.7	92.7	96.8	91.6	94.2	94.3	92.6	93.4
Winner	360	98.3	93.5	95.9	95.4	92.8	94.1	96.8	93.2	95.0
Winner	Mean	96.0	93.2	94.6	94.0	89.9	91.9	95.0	91.5	93.3
Castille	0	93.8		93.8	90.1		90.1	91.9		91.9
Castille	120	92.8	91.7	92.2	89.9	87.8	88.8	91.3	89.7	90.5
Castille	240	90.6	83.8	87.2	86.8	80.8	83.8	88.7	82.3	85.5
Castille	360	97.6	87.7	82.6	92.5	75.3	83.9	95.0	81.5	88.3
Castille	Mean	93.7	89.2	91.4	89.8	83.5	86.7	91.7	86.3	89.0
\\\'' \		04.4		0.4.4	00.0		00.4	00.4		00.4
Win+Cas	0	94.1	01.4	94.1	90.0	0/ 1	90.1	92.1	00.0	92.1
Win+Cas	120	96.2	91.4	93.8	91.8	86.4	89.1	94.0	88.9	91.5
Win+Cas	240	91.1	88.7	89.9	91.8	86.2	89.0	91.5	87.4	89.5
Win+Cas	360	97.9	90.6	94.3	94.0	84.1	89.0	95.9	87.3	91.6
Win+Cas	Mean	94.8	91.2	93.0	91.9	86.7	89.3	93.4	88.9	91.2
Treatment			df	SED	P-Val	ue				
Folicur			3	1.07	NS					
Variety			30	1.14		0.001				
Folicur x V	ariety		4	1.56	NS					
N rate	anoty		30	1.61	NS					
N Manager	nent		30	1.14		0.001				
Var x Nrate			30	2.27		0.065				
Var x Man			30	1.61	NS					
Nrate x Ma	n		30	2.27	(0.085				
Var x Nrate	e x Man		30	3.22	(0.080				
Fol x Nrate	!		14	2.24	NS					
Fol x Man			4	1.56	NS					
Fol x Var x	Nrate		26	3.19	NS					
Fol x Var x	Man		14	2.24	NS					
Fol x Nrate	x Man		26	3.19	NS					
Fol x Var x	Nrate x	Man	30	4.53	NS					

5.2.11 Lodging during seed filling

At Boxworth, the Managed N timings reduced the lodging index from 42% to 36% (P = 0.086; Table 5.84). This effect was strongest for Winner for which the Managed timings reduced lodging from 60% to 49%. Increasing N rate from 0 to 360 kg/ha increased the lodging index from 0 to 60%. Folicur reduced the lodging index from 50% to 29% (P < 0.05). There was a significant interaction between Folicur and Variety. Folicur reduced the lodging index of Castille from 39% to 9% and reduced the lodging index of Winner from 60% to 48%.

At High Mowthorpe there was very little lodging and the percentage area lodged ranged from 0% to 7% between the treatments (Table 5.85). Any lodging resulted from bending of the upper halves of the stems and the treatment differences were negligible.

At Rosemaund, the lodging resulted from bending of the upper halves of the stems. For Winner, the Managed N timings increased the percentage of plot for which the upper stems had bent over from 11 to 18% (P<0.05; Table 5.86). Field observations indicated that the Managed N treatments had a heavier weight of pods and the upper racemes were more flexible. Lodging was increased by increasing N rate and by Winner (P<0.001). Folicur reduced the lodging index from 12% to 7% (P<0.05). Effects were greatest for Winner grown at high N rates, e.g. Folicur reduced the lodging index of Winner at 360 kg N/ha from 32% to 12%.

Table 5.84. Boxworth. Early seed fill measurement of % lodging

Variety	N rate	No Foli				(1.0 l/h		Conv	CM	Grand
	kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Winner	0	0.0		0.0	0.0		0.0	0.0		0.0
Winner	60	0.0	12.5	6.3	0.0	0.0	0.0	0.0	6.2	3.1
Winner	120	80.0	37.5	58.8	52.3	50.8	51.5	66.1	44.1	55.1
Winner	180	81.1	97.4	89.3	90.0	45.0	67.5	85.5	71.2	78.4
Winner	240	85.0	82.5	83.8	62.0	50.0	57.5	75.0	66.2	70.6
Winner	300	100.0	100.0	100.0	100.0	82.5	91.3	100.0	91.3	95.6
Winner	360	95.0	70.0	82.5	87.5	55.0	71.3	91.2	62.5	76.9
Winner	Mean	63.0	57.1	60.1	56.4	40.5	48.4	59.7	48.8	54.3
Castille	0	0.0		0.0	0.0		0.0	0.0		0.0
Castille	60	11.2	0.0	5.6	0.0	0.0	0.0	5.6	0.0	2.8
Castille	120	5.0	47.5	26.3	0.0	0.0	0.0	2.5	22.9	12.7
Castille	180	45.0	37.5	41.3	25.0	0.0	12.5	35.0	18.7	26.9
Castille	240	35.0	62.5	48.8	10.0	10.0	10.0	22.5	36.2	29.4
Castille	300	87.5	70.0	78.8	22.5	37.5	30.0	55.0	53.8	54.4
Castille	360	80.0	65.0	72.5	27.5	0.0	13.8	53.8	32.5	43.1
Castille	Mean	37.7	40.4	39.0	12.1	6.5	9.3	24.9	23.4	24.2
Win+Cas	0	0.0		0.0	0.0		0.0	0.0		0.0
Win+Cas	60	5.6	6.2	5.9	0.0	0.0	0.0	2.8	3.1	3.0
Win+Cas	120	42.5	42.5	42.5	26.1	24.5	25.3	34.3	33.5	33.9
Win+Cas	180	63.0	67.5	65.3	57.5	22.5	40.0	60.3	45.0	52.6
Win+Cas	240	60.0	72.5	66.2	37.5	30.0	33.8	48.7	51.2	50.0
Win+Cas	300	93.7	85.0	89.4	61.2	60.0	60.6	77.5	72.5	75.0
Win+Cas	360	87.5	67.5	77.5	57.5	27.5	42.5	72.5	47.5	60.0
Win+Cas	Mean	50.3	48.7	49.5	34.3	23.5	28.9	42.3	36.1	39.2
Treatment			df	SED	P-Value	е				
Folicur			3	4.18	0.	016				
Variety			157	3.58	<0.	001				
Folicur x Va	ariety		9	5.50		013				
N rate			157	6.70	<0.					
N Managen			157	3.58		086				
Var x Nrate	9		157	9.47		001				
Var x Man			157	5.06	NS					
Nrate x Ma			157	9.47	NS					
Var x Nrate			157	13.40	NS	0//				
Fol x Nrate	!		64	9.71		.066				
Fol x Man	Ninota		9	5.50	NS					
Fol x Var x			122	13.57	NS NC					
Fol x Var x			28 122	7.48	NS NS					
Fol x Nrate		Man	122 153	13.57 19.07	NS NS					
Fol x Var x	iviale X	iviaii	100	17.07	INO					

Table 5.85. High Mowthorpe. Early seed fill measurement of % lodging

Variety	N rate	No Fol				r (1.0 l/		Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	1.5		1.5	1.0		1.0	1.3		1.3
Winner	60	0.5	2.8	1.6	1.0	1.0	1.0	0.8	1.9	1.3
Winner	120	3.5	3.0	3.3	1.0	1.3	1.1	2.3	2.1	2.2
Winner	180	1.3	1.8	1.5	0.8	1.0	0.9	1.0	1.4	1.2
Winner	240	0.8	6.8	3.8	0.8	1.8	1.3	0.8	4.3	2.5
Winner	300	1.3	1.8	1.5	0.8	1.3	1.0	1.0	1.5	1.3
Winner	360	2.0	4.3	3.1	1.0	1.8	1.4	1.5	3.0	2.3
Winner	Mean	1.5	3.1	2.3	0.9	1.3	1.1	1.2	2.2	1.7
Castille	0	0.0		0.0	0.3		0.3	0.1		0.1
Castille	60	0.0	0.0	0.0	0.5	0	0.3	0.3	0.0	0.1
Castille	120	0.0	2.8	1.4	0.5	0.8	0.6	0.3	1.8	1.0
Castille	180	0.5	0.8	0.6	0.3	0.5	0.4	0.4	0.6	0.5
Castille	240	0.3	2.8	1.5	0.8	0.5	0.6	0.5	1.6	1.1
Castille	300	0.5	0.5	0.5	0.5	0.8	0.6	0.5	0.6	0.6
Castille	360	0.0	2.8	1.4	0.8	0.5	0.6	0.4	1.6	1.0
Castille	Mean	0.2	1.4	0.8	0.5	0.5	0.5	0.3	0.9	0.6
Win+Cas	0	0.8		0.8	0.6		0.6	0.7		0.7
Win+Cas	60	0.3	1.4	0.8	0.8	0.5	0.6	0.5	0.9	0.7
Win+Cas	120	1.8	2.9	2.3	0.8	1.0	0.9	1.3	1.9	1.6
Win+Cas	180	0.9	1.3	1.1	0.5	0.8	0.6	0.7	1.0	0.8
Win+Cas	240	0.5	4.8	2.6	0.8	1.1	0.9	0.6	2.9	1.8
Win+Cas	300	0.9	1.1	1.0	0.6	1.0	0.8	0.8	1.1	0.9
Win+Cas	360	1.0	3.5	2.3	0.9	1.1	1.0	0.9	2.3	1.6
Win+Cas	Mean	0.9	2.2	0.8	0.7	0.9	1.5	0.8	1.6	1.2
Treatment			df	SED	P-Valu	ıe				
Folicur			3	0.56	NS					
Variety			162	0.30		.001				
•	orioty		4							
Folicur x V	ariety			0.61		.049				
N rate			162	0.45		.037				
N Manager			162	0.24		.001				
Var x Nrate	Э		162	0.63	NS					
Var x Man			162	0.34	NS					
Nrate x Ma			162	0.63	NS					
Var x Nrate	e x Man		162	0.89	NS					
Fol x Nrate)		13	0.81	NS					
Fol x Man			4	0.61	0	.013				
Fol x Var x	Nrate		31	1.03	NS					
Fol x Var x			7	0.70	NS					
Fol x Nrate			31	1.03	NS					
	Nrate x	Man	72	1.36	NS					

Table 5.86. Rosemaund. Early seed fill measurement of % lodging as an index

Variety	N rate	No Fol				(1.0 l/h		Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Minnor	0	0.0		0.0	1 7		1 7	1.2		1.0
Winner Winner	0 60	0.8 8.5	5.1	0.8 6.8	1.7 7.8	3.1	1.7 5.5	1.3 8.2	4.1	1.3 6.1
Winner	120	7.0	22.5	14.8	3.7	12.3	8.0	5.4	17.4	11.4
Winner	180	15.6	29.8	22.7	2.9	12.3	7.5	9.3	20.9	15.1
Winner	240	15.4	34.8	25.1	12.5	17.1	14.8	13.9	25.9	19.9
Winner	300	24.0	41.3	32.6	25.8	17.1	21.5	24.9	29.2	27.0
Winner	360	21.5	41.8	31.6	5.4	18.8	12.1	13.4	30.3	21.9
Winner	Mean	13.3	25.1	19.2	8.5	11.7	10.1	10.9	18.4	14.7
vviiiiei	ivieari	13.3	23.1	19.2	6.5	11.7	10.1	10.9	10.4	14.7
Castille	0	0.0		0.0	0.0		0.0	0.0		0.0
Castille	60	0.8	0.2	0.5	0.0	0.0	0.0	0.4	0.1	0.3
Castille	120	0.4	2.8	1.6	0.2	0.2	0.2	0.3	1.5	0.9
Castille	180	3.8	1.0	2.4	0.3	0.3	0.3	2.0	0.7	1.4
Castille	240	4.5	20.0	12.3	0.2	2.3	1.2	2.3	11.1	6.7
Castille	300	10.0	12.7	11.3	0.5	8.1	4.3	5.2	10.4	7.8
Castille	360	9.2	3.4	6.3	1.8	1.4	1.6	5.5	2.4	4.0
Castille	Mean	4.1	5.7	4.9	0.4	1.8	1.1	2.3	3.7	3.0
\\/:\\\	0	0.4		0.4	0.0		0.0	0.7		0.7
Win+Cas Win+Cas	0 60	0.4	2.6	0.4 3.7	0.8	1.5	0.8 2.7	0.6	2.1	0.6 3.2
Win+Cas Win+Cas	120	4.7 3.7	12.6	3.7 8.2	1.9	6.2	2.7 4.1	4.3 2.8	9.4	5.2 6.1
Win+Cas Win+Cas	180	9.7	15.4	12.5	1.6	6.2	3.9	5.7	10.8	8.2
Win+Cas Win+Cas	240	10.0	27.4	18.7	6.3	9.7	8.0	8.1	18.5	13.3
Win+Cas Win+Cas	300	17.0	27.4	22.0	13.2	12.6	12.9	15.1	19.8	17.4
Win+Cas Win+Cas	360	15.3	27.6	19.0	3.6	10.1	6.9	9.5	16.3	12.9
Win+Cas Win+Cas	Mean	8.7	15.4	19.0	4.5	6.7	5.6	6.6	11.1	8.8
					•					
Treatment			df	SED	P-Valu	е				
Folicur			3	0.79	0.	004				
Variety			162	1.29	<0.	001				
Folicur x V	ariety		36	1.52	0.	044				
N rate	,		162	2.42	<0.	001				
N Manager	nent		162	1.29		001				
Var x Nrate			162	3.42		003				
Var x Man			162	1.83		020				
Nrate x Ma	ın		162	3.42	NS O.					
	Vrate x Man Var x Nrate x Man			4.84	NS					
	Fol x Nrate x Mair			3.27		061				
	Fol x Man			1.52		083				
	Fol x Var x Nrate			4.73	NS					
	fol x Var x Man			2.38	NS					
	ol x Nrate x Man			4.73	NS					
Fol x Var x		Man	164 164	6.77	NS					
. O. A. Vui A	wi ato A	.viui i	107	0.77	110					

5.1.12 Pod greenness at mid seed filling

At Boxworth, increasing N rate from 0 to 360 kg N/ha increased the percentage of green pods from 38% to 59% (P<0.001; Table 5.87). The Managed N timings appeared to increase the percentage of green pods for the 60 kg N/ha N rate but this effect was not significant and there were no effect at the other N rates.

At High Mowthorpe, increasing N rate from 0 to 360 kg N/ha increased the percentage of green pods from 68% to 96% on 20 June, from 46% to 85% on 29 June and from 36% to 74% on 13 July (P<0.001; Table 5.88). There was no difference in the percentage of green pods between the Conventional and Managed N timings.

At Rosemaund, pod greenness was measured as an index, where 1 was not green and 5 was dark green, except on the 28 June when the percentage of green pods was also measured. Increasing N rate from 0 to 360 kg N/ha increased the percentage of green pods from 3.5 to 5.0 on 16 May, from 2.0 to 4.1 on 29 May and from 1.0 to 2.3 on 28 June (P<0.001; Table 41). Increasing N rate increased the percentage of green pods from 0% to 38% on 28 June (P<0.001). The Managed N timings increased the percentage of green pods from 15% to 21% (P=0.074; Table 5.90). There was no difference between the Conventional and Managed N timings for pod greenness on 16 May and 29 May.

Table 5.87. Boxworth. % pods that were green for Winner without Folicur.

	20 June		
kg/ha N	Conv	CM	Mean
0	19.2		
60	27.5	48.5	37.5
120	43.8	42.5	43.1
240	53.8	50.0	51.9
360	62.5	55.0	58.8
Mean	46.9	49.0	48.0
<u>P-Value</u> Timing Nitrogen Timing x N	NS <0.001 NS		
SED (27 df) Timing Nitrogen Timing x N	3.81 6.03 8.53		

Table 5.88. High Mowthorpe. % pods that were green for Winner without Folicur.

	20 June			29 June			13 July	13 July			
kg/ha N	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean		
0	67.50			46.25			36.25				
60	76.25	78.75	77.50	60.00	62.50	61.25	48.75	50.00	49.38		
120	86.25	87.50	86.88	71.25	75.00	73.12	60.00	62.50	61.25		
240	97.50	93.75	95.62	87.50	82.50	85.00	75.00	68.75	71.88		
360	93.75	98.75	96.25	82.50	87.50	85.00	71.25	77.50	74.38		
	84.25	85.25	84.75	69.50	70.75	70.13	58.25	59.00	58.63		
P-Value											
Timing	NS			NS			NS				
Nitrogen	< 0.001			< 0.001			< 0.001				
Timing x N	NS			NS			NS				
SED (27 df)											
Timing	1.503			1.948			1.817				
Nitrogen	2.377			3.080			2.874				
Timing x N	3.361			4.355			4.064				

Table 5.89. Rosemaund. Pod greenness for Winner without Folicur. Index 1 to 5 where 1=not green and 5=dark green

	16 May			29 May			28 June				28 June		
	Index 1	to 5		Index 1	to 5		Index 1	to 5		% of po	% of pods green		
kg/ha N	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	
0	3.50			2.00			1.00			0			
60	4.00	4.00	4.00	2.75	3.00	2.88	1.00	1.00	1.00	0	0	0	
120	4.25	4.25	4.25	3.13	3.50	3.31	1.25	1.88	1.56	6.2	22.5	14.4	
240	4.75	5.00	4.85	4.00	4.00	4.00	2.25	2.25	2.25	37.5	37.5	37.5	
360	5.00	5.00	5.00	4.13	4.00	4.06	2.13	2.38	2.25	31.2	43.8	37.5	
mean	4.30	4.35	4.33	3.20	3.30	3.25	1.53	1.70	1.61	15.0	20.8	18.0	
<u>P-Value</u>													
Timing	NS			NS			NS			0.074			
Nitrogen	< 0.001			< 0.001			< 0.001			< 0.001			
Timing x N	NS			NS			NS			NS			
SED (27 df)													
Timing	0.105			0.081			0.082			3.10			
Nitrogen	0.166			0.128			0.129			4.90			
Timing x N	0.235			0.181			0.182			6.92			

5.2.13 Dry matter at harvest

At Boxworth for Winner without Folicur, the Managed N timings reduced seed weight from 5.19 t/ha to 4.53 t/ha (P<0.05; Table 5.89), reduced stem weight from 5.01 to 4.73 t/ha (NS), reduced pod weight from 3.68 t/ha to 3.28 t/ha (P = 0.075) and reduced total dry matter from 13.88 t/ha to 12.54 t/ha (NS). The effect on seed yield was unexpected as the combine yields showed that the Managed N timings increased seed yield for this treatment. The combine yields are more accurate due to the much larger crop area over which they are estimated. It is unlikely that seed was lost during sampling because the seed yields are greater than the combine yields. Therefore it must be concluded that unrepresentative areas of plot were quadrat sampled. The Managed N timings for Castille at 240 kg N/ha increased yield from 5.57 t/ha to 6.45 t/ha (NS; Table 5.92)

Increasing N rate increased the weight of the pod walls, seeds and total dry weight (P<0.05; Table 5.90). This effect mainly resulted from increasing N rate from 0 to 60 kg N/ha. Dry matter increases above 60 kg N/ha were small. At 240 kg N/ha, Castille had a greater stem, pod and seed dry weight than Winner (P<0.1; Table 5.93).

At High Mowthorpe for Winner without Folicur, the Managed N timings significantly reduced the stem biomass from 4.09 t/ha to 3.75 t/ha and had no significant effects on the dry weights of the pod walls and seed (P<0.05; Table 5.91). At 240 kg/ha, the Managed timings also reduced the stem weight of both Winner and Castille and had no effect of the weight of the pod walls and the seed (P<0.05; Table 5.94) compared to conventional timings. Increasing N rate increased the weight of the stems, pod walls and seed (P<0.05; Table 5.91). At 240 kg N/ha, there was no difference for the weight of the stems, pod walls and seeds between Winner and Castille (Table 5.94).

At Rosemaund, for Winner without Folicur, the Managed N timings did not affect the weight of the stems, pod walls, seed or total dry weight (Table 5.92). At 240 kg N/ha, the Managed timings reduced the weight of the stems for Castille (P<0.05; Table 5.95). Managed N timings also reduced the seed weight of Castille (P<0.1; Table 5.95). This effect was not consistent with the combine yields which may indicate that unrepresentative areas of plot were sampled for the Castille, Managed N at 240 kg N/ha treatment. Increasing N rate increased the weight of the pod walls and seed (P<0.05; Table 5.92). This effect mainly resulted from increasing N rate from 0 to 60 kg N/ha.

Table 5.89. Boxworth. Pre-harvest measurement of dry matter (t/ha) for Winner without Folicur.

	Stem d	lry matte	r (t/ha)	Pod dry	matter (t/ha)	Seed dr	ry matter	(t/ha)	Total dr	Total dry matter (t/ha)		
kg/ha N	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	
0	4.31			2.65			3.87			10.82			
60	5.96	5.54	5.75	3.59	3.56	3.57	5.76	4.44	5.10	15.31	13.53	14.42	
120	4.91	5.30	5.10	4.30	3.90	4.10	6.45	5.51	5.98	15.66	14.71	15.18	
240	5.00	3.95	4.48	3.83	2.96	3.39	4.67	4.00	4.34	13.50	10.92	12.21	
360	4.87	4.58	4.72	4.03	3.34	3.68	5.22	4.82	5.02	14.12	12.73	13.43	
Mean	5.01	4.73	4.87	3.68	3.28	3.48	5.19	4.53	4.86	13.88	12.54	13.21	
P-Value													
Timing	NS			0.075			0.05			NS			
Nitrogen	NS			0.005			0.004			0.016			
Timing x N	NS			NS			NS			NS			
SED (27 df)													
Timing	0.373			0.214			0.321			0.800			
Nitrogen	0.590			0.338			0.507			1.266			
Timing x N	0.834			0.479	1		0.717			1.790			

Table 5.90. High Mowthorpe. Pre-harvest measurement of dry matter (t/ha) for Winner without Folicur.

	Stem dr	y matter	r (t/ha)	Pod dry	matter	(t/ha)	Seed dr	ry matter	(t/ha)	Total dry matter (t/ha)		
kg/ha N	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
0	3.13			1.71			2.24			7.09		_
60	4.06	3.86	3.96	2.63	2.75	2.67	3.61	3.35	3.48	10.30	9.92	10.11
120	4.09	3.96	4.02	2.81	3.11	2.96	3.89	3.95	3.92	10.80	11.02	10.91
240	4.47	3.97	4.22	3.22	3.08	3.15	4.03	3.55	3.79	11.72	10.61	11.16
360	4.69	3.84	4.27	3.45	3.00	3.23	4.80	4.17	4.49	12.95	11.01	11.98
Mean	4.09	3.75	3.92	2.77	2.73	2.75	3.72	3.45	3.59	10.57	9.93	10.25
<u>P-Value</u>												
Timing	0.04			NS			NS			NS		
Nitrogen	< 0.001			< 0.001			< 0.001			< 0.001		
Timing x N	NS			NS			NS			NS		
SED (27 df)												
Timing	0.158			0.109			0.236			0.402		
Nitrogen	0.249			0.172			0.373			0.635		
Timing x N	0.352			0.243			0.527			0.898		

Table 5.91. Rosemaund. Pre-harvest measurement of dry matter (t/ha) for Winner without Folicur.

	Stem d	ry matte	r (t/ha)	Pod dry	/ matter	(t/ha)	Seed d	Seed dry matter (t/ha)			Total dry matter (t/ha)		
kg/ha N	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	
0	3.89			2.29			2.86			9.06		_	
60	4.16	4.62	4.39	3.00	3.27	3.13	3.51	3.77	3.64	10.67	11.66	11.16	
120	4.37	4.45	4.41	2.95	3.06	3.00	3.83	4.04	3.94	11.15	11.56	11.35	
240	4.53	4.89	4.71	3.41	3.47	3.44	3.19	3.73	3.46	11.12	12.08	11.60	
360	4.50	4.11	4.30	3.08	2.83	2.95	3.92	3.85	3.89	12.11	10.96	11.53	
Mean	4.29	4.39	4.34	2.94	2.98	2.96	3.46	3.65	3.56	10.82	11.06	10.94	
P-Value													
Timing	NS			NS			NS			NS			
Nitrogen	NS			0.018			0.037			0.078			
Timing x N	NS			NS			NS			NS			
SED (24 df)													
Timing	0.268			0.197			0.224			0.613			
Nitrogen	0.424			0.312			0.354			0.969			
Timing x N	0.600			0.441			0.501			1.370			

Table 5.92. Boxworth. Dry matter and N content for Winner and Castille without Folicur.

		Dry ma	tter (t/ha)			Stem	Pod	Stem N	Pod N	Seed N	Total N
	kg/ha N	Stem	Pod	Seed	Total	N%	N%	kg/ha	kg/ha	(kg/ha)	(kg/ha)
Winner	240 conv	5.00	3.83	4.67	13.50	1.24	1.17	65.6	44.2	158.2	267.9
	240 CM	4.23	3.31	4.35	11.88	1.04	1.12	38.3	31.0	122.9	192.2
Castille	240 conv	5.73	4.85	5.57	16.15	0.90	0.92	46.3	40.9	178.3	265.5
	240 CM	5.81	5.45	6.45	17.71	1.08	1.03	61.9	55.6	214.4	331.9
<u>Means</u>											
Winner		4.62	3.57	4.51	12.69	1.14	1.14	51.9	37.6	140.5	230.1
Castille		5.77	5.15	6.01	16.93	0.99	0.97	54.1	48.3	196.3	298.7
240 kg/h	a N conv	5.36	4.34	5.12	14.83	1.07	1.04	55.9	42.5	168.2	266.7
240 kg/h	a N CM	5.02	4.38	5.40	14.80	1.06	1.07	50.1	43.3	168.6	262.1
<u>P-Value</u>											
Variety		0.099	0.006	0.017	0.017	NS	NS	NS	NS	0.02	0.07
Timing		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Var x N t	iming	NS	NS	NS	NS	NS	NS	NS	0.07	NS	NS
<u>SED (9 d</u>	<u>f)</u>										
Variety		0.608	0.406	0.479	1.352	0.117	0.095	11.9	7.2	20.2	33.6
Timing		0.608	0.406	0.479	1.362	0.117	0.095	11.9	7.2	20.2	33.6
Var x N t	iming	0.859	0.575	0.677	1.925	0.165	0.134	16.8	10.1	28.5	47.6

Table 5.93. High Mowthorpe. Dry matter and N content for Winner and Castille without Folicur.

-		Dry ma	tter (t/ha)			Stem	Pod	Stem N	Pod N	Seed N	Total N
	kg/ha N	Stem	Pod	Seed	Total	N%	N%	kg/ha	kg/ha	(kg/ha)	(kg/ha)
Winner	240 conv	4.47	3.22	4.03	11.72	1.16	1.07	51.8	34.8	123.9	210.4
	240 CM	3.97	3.08	3.55	10.61	1.04	1.08	42.9	33.8	110.3	187.0
Castille	240 conv	4.25	3.48	4.60	12.33	1.10	1.08	48.4	38.0	140.0	226.4
	240 CM	3.67	3.30	3.92	10.89	1.04	1.01	39.2	33.3	120.9	193.4
<u>Means</u>											
Winner		4.22	3.15	3.79	11.16	1.10	1.07	47.4	34.3	117.1	198.9
Castille		3.96	3.39	4.26	11.61	1.07	1.04	43.8	35.7	130.4	209.9
240 kg/h	a N conv	4.36	3.35	4.31	12.03	1.13	1.07	50.1	36.4	131.9	218.4
240 kg/h	a N CM	3.82	3.19	3.74	10.75	1.04	1.04	41.1	33.6	115.6	190.2
<u>P-Value</u>											
Variety		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Timing		0.03	NS	NS	NS	NS	NS	0.071	NS	NS	NS
Var x N t	iming	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SED (9 d	<u>f)</u>										
Variety		0.218	0.169	0.551	0.779	0.078	0.066	4.41	2.79	17.00	19.49
Timing		0.218	0.169	0.551	0.779	0.078	0.066	4.41	2.79	17.00	19.49
Var x N t	iming	0.308	0.239	0.779	1.102	0.110	0.094	6.23	3.75	24.01	27.57

Table 5.94. Rosemaund. Dry matter and N content for Winner and Castille without Folicur.

		Dry ma	tter (t/ha)			Stem	Pod	Stem N	Pod N	Seed N	Total N
	kg/ha N	Stem	Pod	Seed	Total	N%	N%	kg/ha	kg/ha	(kg/ha)	(kg/ha)
Winner	240 conv	4.53	3.40	3.19	11.12	1.20	1.04	54.1	35.2	103.0	192.3
	240 CM	4.89	3.46	3.73	12.08	1.17	1.32	56.7	45.8	123.6	226.0
Castille	240 conv	4.78	3.71	4.07	12.56	1.06	1.03	50.7	38.1	126.5	215.3
	240 CM	3.00	3.28	3.24	9.52	1.10	1.30	32.3	43.2	108.9	184.4
<u>Means</u>											
Winner		4.71	3.43	3.46	11.60	1.19	1.18	55.4	40.5	113.3	209.2
Castille		3.89	3.49	3.65	11.04	1.08	1.17	42.8	40.3	118.9	202.0
240 kg/h	a N conv	4.65	3.56	3.63	11.84	1.13	1.03	52.4	36.6	114.7	203.8
240 kg/h		3.94	3.37	3.48	10.80	1.14	1.31	44.5	44.5	116.2	205.2
P-Value											
Variety		0.019	NS	NS	NS	NS	NS	NS	NS	NS	NS
Timing		0.033	NS	NS	NS	NS	0.003	NS	NS	NS	NS
Var x N t	iming	0.005	NS	0.087	0.029	NS	NS	NS	NS	0.087	0.053
<u>SED (9 d</u>	f)										
Variety		0.278	0.350	0.353	0.756	0.063	0.065	4.78	6.02	10.66	14.45
Timing		0.278	0.350	0.353	0.756	0.063	0.065	4.76	6.02	10.66	14.45
Var x N t	iming	0.393	0.495	0.499	1.069	0.089	0.092	6.73	8.51	15.07	20.43

5.2.14 Crop N content

At Boxworth, increasing N rate from 0 to 360 kg N/ha increased the seed N concentration from 2.88% to 3.44% (P<0.001; Table 5.95), increased stem N concentration from 0.72% to 1.31% (P<0.001; Table 5.96) and increased pod wall N concentration from 0.73% to 1.14% (P<0.001; Table 5.96). There was an indication that Managed N timings increased pod wall N concentration, but this was not statistically significant. Managed N timings did not affect the stem N concentration. There was no difference in the concentration of N in the seed, pod wall or the stem between Winner and Castille (Table 5.92, Table 5.95).

Increasing N rate from 0 to 360 kg N/ha increased the seed N content from 124 to 173 kg/ha, increased stem N content from 38 to 62 kg/ha and increased pod wall N content from 21 to 52 kg/ha (P<0.001; Table 50). There was no indication that Managed N timings affected the N content of the stems, pods or seeds (Table 5.92 and 5.97). Castille had a greater N content in the pod wall than Winner (Table 5.92).

At High Mowthorpe, increasing N rate from 0 to 360 kg N/ha increased the seed N concentration from 2.69% to 3.10% (P<0.001; Table 5.95), increased stem N concentration from 0.70% to 1.19% (P<0.001; Table 5.98) and increased pod wall N concentration from 0.75% to 1.06% (P<0.001; Table 5.98). The Managed N timings increased seed N concentration from 2.87% to 2.94% (P<0.05; Table 5.95) and had no effect on the concentration of N in the pod walls (Table 5.98). There was an indication that Managed N timings reduced stem N concentration (Table 5.93), but this was not statistically significant and was not supported by data in Table 5.98. Winner had an average seed N concentration of 2.96% compared with 2.87% for Castille (P<0.001; Table 5.95). There was no difference in the concentration of N in the pod wall or the stem between Winner and Castille (Table 5.93).

Increasing N rate from 0 to 360 kg N/ha increased the seed N content from 63 to 140 kg/ha, increased stem N content from 22 to 47 kg/ha and increased pod wall N content from 13 to 34 kg/ha (P<0.001; Table 5.95). At 240 kg N/ha, the Managed timings reduced the amount of N in the stems by 10 kg N/ha (Table 5.93), but this effect did not occur at other N rates (Table 5.98). There was also an indication that the Managed timings reduced the amount of N in the seed (Table 5.93 and 5.99). There was no indication that Managed N timings affected the N content of the pods

(Table 5.93 and 5.99). Castille had a greater N content in the seed than Winner and a similar amount in the stems and pods (Table 5.92).

At Rosemaund, increasing N rate from 0 to 360 kg N/ha increased the seed N concentration from 2.58% to 3.66% (P<0.001; Table 5.95), increased stem N concentration from 0.66% to 1.27% (P<0.001; Table 5.100) and increased pod wall N concentration from 0.70% to 1.35% (P<0.001; Table 5.100). The Managed N timings increased seed N concentration from 2.95% to 3.05% (P<0.001; Table 5.95) and these effects were greater at the higher N rates. Managed timings increased pod wall N concentration (P<0.05; Table 5.100) and had no effect on the stem N concentration. There was no difference in the concentration of N in the seed, pod wall or the stem between Winner and Castille (Table 5.92, Table 5.95). Winner had an average seed N concentration of 3.03% compared with 2.97% for Castille (P<0.01; Table 5.95). There was no difference in the concentration of N in the pod wall or the stem between Winner and Castille (Table 5.94).

Increasing N rate from 0 to 360 kg N/ha increased the seed N content from 74 to 133 kg/ha, increased stem N content from 26 to 54 kg/ha and increased pod wall N content from 16 to 39 kg/ha (P<0.001; Table 5.99). There was an indication that Managed N timings increased the N content of the pods and seeds whilst having no effect on the stem N content (Table 5.99). Castille and Winner had similar amounts of N in their stems, pod walls and seeds (Table 5.94).

Table 5.95. Nitrogen concentration in the seed without Folicur.

Varioty	Variety N Boxworth seed						e seed	Rosemaund seed		
variety	rate	Nitrog		ı	Nitroge		e seeu	Nitrog		ecu
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
-	ку/па	CONV	CIVI	ivieari	CONV	CIVI	IVIEALI	CON	CIVI	IVIEALI
Winner	0	2.94		2.94	2.82		2.82	2.56		2.56
Winner	60	2.91	2.99	2.95	2.73	2.87	2.80	2.85	2.80	2.83
Winner	120	3.23	3.25	3.24	2.73	3.05	2.80	2.63	3.14	3.06
Winner	240	3.40	3.38	3.39	3.08	3.11	3.09	3.23	3.31	3.27
Winner	360	3.42	3.50	3.46	3.10	3.15	3.12	3.32	3.49	3.41
Winner	Mean	3.18	3.21	3.19	2.93	3.00	2.96	2.99	3.06	3.03
Castille	0	2.82		2.82	2.55		2.55	2.60		2.60
			2.05			2 (0			2.07	
Castille	60	2.93	2.95	2.94	2.80	2.69	2.74	2.75	2.86	2.81
Castille	120	3.07	3.27	3.17	2.91	2.93	2.92	2.82	3.02	2.92
Castille	240	3.37	3.32	3.34	3.05	3.08	3.06	3.11	3.31	3.21
Castille	360	3.41	3.43	3.42	3.03	3.15	3.09	3.22	3.42	3.32
Castille	Mean	3.12	3.16	3.14	2.87	2.88	2.87	2.90	3.04	2.97
Win+Cas	0	2.88		2.88	2.69		2.69	2.58		2.58
			2.07			2.70			2.02	
Win+Cas	60	2.92	2.97	2.94	2.76	2.78	2.77	2.80	2.83	2.82
Win+Cas	120	3.15	3.26	3.20	2.91	2.99	2.95	2.90	3.08	2.99
Win+Cas	240	3.38	3.35	3.36	3.06	3.09	3.08	3.17	3.31	3.24
Win+Cas	360	3.41	3.47	3.44	3.06	3.15	3.10	3.27	3.45	3.36
Win+Cas	Mean	3.15	3.18	3.17	2.87	2.94	2.92	2.95	3.05	3.00
Treatment		df	SED	P-Val	df	SED	P-Val	df	SED	P-Val
Variety		57	0.035	NS	57	0.020	< 0.01	57	0.018	0.003
N rate		57 57	0.055	< 0.01	57 57	0.020	< 0.01	57	0.018	< 0.01
N Managem	nent	57 57	0.035	NS	57 57	0.032	0.042	57	0.028	< 0.01
Var x Nrate		57	0.078	NS	57	0.046	0.002	57	0.040	0.028
Var x Man	•	5 <i>7</i>	0.049	NS	57	0.029	NS	57	0.025	0.052
Nrate x Mai	n	57	0.078	NS	57	0.046	NS	57	0.040	0.003
Var x Nrate		57	0.111	NS	57	0.064	NS	57	0.057	NS

Table 5.96. Boxworth. Pre-harvest measurement of nitrogen concentration for Winner without Folicur.

-	N % Sten	า		N % Pod		
kg/ha N	Conv	CM	Mean	Conv	CM	Mean
0	0.72			0.73		
60	0.61	0.83	0.72	0.86	0.98	0.92
120	0.91	0.86	0.88	0.96	1.09	1.02
240	1.24	1.04	1.14	1.17	1.12	1.14
360	1.27	1.34	1.31	1.07	1.22	1.14
Mean	0.95	0.96	0.97	0.96	1.03	1.00
<u>P-Value</u> Timing Nitrogen Timing x N	NS <0.001 NS			NS <0.001 NS		
SED (27 df)						
Timing	0.064			0.052		
Nitrogen	0.101			0.082		
Timing x N	0.143			0.115		

Table 5.97. Boxworth. Pre-harvest measurement of N content for Winner without Folicur.

	Stem N	(kg/ha)		Pod wa	II N (kg/h	a)	Seed N	(kg/ha)		Total C	op N (kg/h	a)
kg/ha N	Conv	CM	Mean	Conv	CM	Mean	Conv	СM	Mean	Conv	Mngd	Mean
0	37.8			21.1			124.2			183.1	_	
60	36.1	45.7	40.9	30.7	34.6	32.7	166.6	132.1	149.3	233.4	212.4	222.9
120	45.9	46.8	46.3	41.2	43.9	42.5	208.7	179.6	194.2	295.8	270.2	283.0
240	65.6	38.3	51.9	44.2	31.0	37.6	158.2	122.9	140.5	267.9	192.2	230.1
360	62.4	61.6	62.0	42.9	40.7	41.8	177.8	169.0	173.4	283.1	271.3	277.2
Mean	52.5	48.1	50.3	39.8	37.5	38.6	177.8	150.9	164.4	270.1	236.5	253.3
P-Value												
Timing	NS			NS			0.053			NS		
Nitrogen	< 0.05			< 0.01			0.002			0.004		
Timing x N	NS			NS			NS			NS		
SED (27 df)												
Timing	6.61			3.19			10.62			16.52		
Nitrogen	10.46			5.04			16.79			26.12		
Timing x N	14.79			7.12			23.75			36.93		

Table 5.98. High Mowthorpe. Pre-harvest measurement of nitrogen concentration for Winner without Folicur.

	N % St	em		N % Pod				
kg/ha N	Conv	Mngd	Mean	Conv	Mngd	Mean		
0	0.70			0.75				
60	0.70	0.85	0.77	0.87	0.89	0.88		
120	0.82	0.84	0.83	0.94	0.92	0.93		
240	1.16	1.04	1.10	1.07	1.08	1.07		
360	1.04	1.19	1.11	1.07	1.04	1.06		
Mean	0.88	0.92	0.90	0.94	0.94	0.94		
<u>P-Value</u>								
Timing	NS			NS				
Nitrogen	< 0.001			0.001				
Timing x N	NS			NS				
SED (27 df)								
Timing	0.056			0.049				
Nitrogen	0.089			0.078				
Timing x N	0.126			0.110				

Table 5.99. High Mowthorpe. Pre-harvest measurement of N content for Winner without Folicur.

	Stem N	(kg/ha)		Pod wa	II N (kg/ha	a)	Seed N	(kg/ha)		Total Cr	op N (kg/h	na)
kg/ha N	Conv	Mngd	Mean	Conv	Mngd	Mean	Conv	Mngd	Mean	Conv	Mngd	Mean
0	22.2			12.8			63.1			98.1		
60	28.1	32.3	30.2	22.9	25.0	23.9	98.9	96.0	97.4	149.8	153.3	151.5
120	33.2	32.8	33.0	26.6	28.8	27.7	113.3	120.4	116.9	173.1	182.0	177.6
240	51.8	42.9	47.4	34.8	33.8	34.3	123.9	110.3	117.1	210.4	187.0	198.7
360	48.6	46.1	47.3	37.6	31.0	34.3	148.5	130.8	139.7	234.7	207.9	221.3
Mean	40.4	38.5	39.5	30.5	29.7	30.1	121.2	114.4	117.8	192.0	182.5	187.3
P-Value												
Timing	NS			NS			NS			NS		
Nitrogen	< 0.001			< 0.001			< 0.001			< 0.001		
Timing x N	NS			NS			NS			NS		
SED (27 df)												
Timing	2.54			2.32			7.00			9.51		
Nitrogen	4.02			3.67			11.05			15.04		
Timing x N	5.69			5.19			15.62			21.27		

Table 5.100. Rosemaund. Pre-harvest measurement of nitrogen concentration for Winner without Folicur.

	N % Stem	1		N % Pod		
kg/ha N	Conv	CM	Mean	Conv	CM	Mean
0	0.66			0.70		
60	0.70	0.70	0.70	0.82	0.81	0.82
120	0.82	0.78	0.80	0.91	1.01	0.96
240	1.20	1.17	1.19	1.04	1.32	1.18
360	1.26	1.28	1.27	1.14	1.56	1.35
Mean	0.93	0.92	0.92	0.92	1.08	1.00
<u>P-Value</u>						
Timing	NS			0.017		
Nitrogen	< 0.001			< 0.001		
Timing x N	NS			NS		
SED (27 df)						
Timing	0.046					
Nitrogen	0.073					
Timing x N	0.104					

Table 5.101. Rosemaund. Pre-harvest measurement of N content for Winner without Folicur.

	Stem N	(kg/ha)		Pod wa	II N (kg/h	a)	Seed N	(kg/ha)		Total Cr	op N (kg/ł	na)
kg/ha N	Conv	CM	Mean	Conv	CM	Mean	Conv	СM	Mean	Conv	Mngd	Mean
0	25.7			15.8			73.6			117.0		
60	29.3	32.0	30.7	25.1	27.0	26.0	100.3	105.3	102.8	154.7	164.3	159.5
120	33.9	34.4	34.1	26.4	30.6	28.5	113.9	126.8	120.3	174.2	191.7	182.9
240	54.1	56.7	55.4	35.2	45.8	40.5	103.0	123.6	113.3	192.3	226.0	209.2
360	54.7	52.4	53.6	33.5	44.1	38.8	130.0	136.2	133.1	225.8	233.6	229.7
Mean	43.0	43.9	43.4	30.0	36.8	33.4	111.8	123.0	117.4	186.7	203.9	195.3
P-Value												
Timing	NS			0.043			NS			NS		
Nitrogen	< 0.001			< 0.001			< 0.001			< 0.001		
Timing x N	NS			NS			NS			NS		
SED (27 df)												
Timing	1.99			2.61			7.00			9.09		
Nitrogen	3.14			4.13			11.07			14.37		
Timing x N	4.44			5.85			15.65			20.32		

5.2.15 Seed size and seed number

At Boxworth, increasing N rate in Winner from 0 to 360 kg N/ha increased the thousand seed weight from 4.68 to 5.21g. Seed number/m² increased significantly from 52,923 at 0 kg N/ha to 66,531 at 120 kg N/ha then declined to 60,547 at 360 kg N/ha (P<0.05; Table 5.102). Managed N timings caused a slight, but non-significant, increase in seed number. There was no indication that Managed N timings affected seed size (Table 5.102 and 5.105). Castille had about 70,000 seeds/m² compared with about 61,000 for Winner and there was no difference in seed size between the varieties (Table 5.105).

At High Mowthorpe, increasing N rate from 0 to 360 kg N/ha increased the seeds/m² from 48,854 to 82,555 (P<0.001; Table 5.103) and had no effect on thousand seed weight. Managed N timings slightly reduced the number of seeds/m² and had no effect on seed size (Table 5.103 and 5.106). Castille had about 92,000 seeds/m² compared with about 81,000 for Winner and had slightly (but not significantly) heavier seeds (Table 5.106).

At Rosemaund, increasing N rate from 0 to 360 kg N/ha increased the thousand seed weight of the Conventionally timed N treatments from 5.15 to 5.43 g but there was no effect in the Managed N treatments (P<0.05; Table 5.104). Increasing N rate from 0 to 240 kg N/ha increased seeds/m² from 60,172 to 91,922 (P<0.001; Table 5.107). Increasing N rate from 240 to 360 kg N/ha reduced the seeds/m² to 89,778. At 240 and 360 kg N/ha, the Managed N timings increased seed number and reduced seed size (P<0.05; Table 5.104 and 5.105). At 240 kg N/ha, Castille and Winner had a similar seed size and seed number (Table 5.105).

Table 5.102. Boxworth. Thousand seed weight (TSW) and seeds/m² for Winner without Folicur.

	TSW (g)			† Seeds/r	n^2		Combine	Combine yield (t/ha)		
kg/ha N	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	
0	4.68			51923			2.43			
60	4.63	4.68	4.65	61555	66239	64086	2.85	3.10	2.98	
120	4.85	5.00	4.93	69897	63600	66531	3.39	3.18	3.28	
240	5.18	5.15	5.16	60039	61942	61047	3.11	3.19	3.15	
360	5.25	5.18	5.21	57905	61004	60547	3.04	3.16	3.10	
Mean	4.98	5.00	4.99	63008	63968	63489	3.10	3.16	3.13	
P-Value										
Timing	NS			NS			NS			
Nitrogen	< 0.001			< 0.05			0.001			
Timing x N	NS			NS			NS			
SED (27 df)										
Timing	0.067			3099			0.202			
Nitrogen	0.106			4900			0.128			
Timing x N	0.150			6930			0.285			

[†] calculated from combine seed yield

Table 5.103. High Mowthorpe. Thousand seed weight (TSW) and seeds/ m^2 for Winner without Folicur.

TSW (g)				† Seeds/r	n²		Combine	Combine yield (t/ha)		
kg/ha N	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	
0	5.42			48854			2.64			
60	5.30	5.32	5.31	71426	67381	69403	3.77	3.57	3.67	
120	5.14	5.52	5.33	84526	75684	80105	4.34	4.18	4.26	
240	5.56	5.28	5.42	81576	80763	81169	4.52	4.26	4.39	
360	5.49	5.32	5.41	83254	81855	82555	4.55	4.34	4.45	
Mean	5.37	5.36	5.37	80196	76421	78308	4.30	4.09	4.19	
P-Value										
Timing	NS			NS			0.051			
Nitrogen	NS			< 0.001			< 0.001			
Timing x N	NS			NS			NS			
SED (27 df)										
Timing	0.080			2304			0.081			
Nitrogen	0.126			3643			0.128			
Timing x N	0.179			5151			0.181			

[†] calculated from combine seed yield

Table 5.104. Rosemaund. Thousand seed weight (TSW) and seeds/m² for Winner without Folicur

	TSW (g)			† Seeds/m ²			Combine	yield (t/ha)	
kg/ha N	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
0	5.15			60172			3.10		
60	5.22	5.14	5.18	74142	76798	75470	3.86	3.92	3.89
120	4.92	5.25	5.09	86288	82604	84446	4.23	4.33	4.28
240	5.38	4.87	5.13	88063	95780	91922	4.74	4.65	4.70
360	5.43	4.97	5.23	83003	96553	89778	4.50	4.75	4.63
Mean	5.24	5.06	5.15	82874	87934	85404	4.33	4.41	4.37
P-Value									
Timing	0.075			0.084			NS		
Nitrogen	NS			< 0.001			< 0.001		
Timing x N	0.012			NS			NS		
SED (27 df)									
Timing	0.078			2164			0.078		
Nitrogen	0.123			3420			0.123		
Timing x N	0.174			4838			0.175		

[†] calculated from combine seed yield

Table 5.105. Thousand seed weight (TSW) and seeds/ m^2 for Winner and Castille without Folicur.

		Boxworth			High Mov	/thorpe		Rosemau	nd	
	kg/ha N	TSW (g)	Seeds/m ²	Yield (t/ha)	TSW (g)	Seeds/m ²	Yield (t/ha)	TSW (g)	Seeds/m ²	Yield (t/ha)
Winner	240 conv	5.18	60463	3.11	5.56	81576	4.52	5.38	88063	4.74
	240 CM	5.15	61873	3.19	5.28	80763	4.26	4.87	95780	4.65
Castille	240 conv	5.48	70288	3.84	5.62	95342	5.34	5.43	91511	4.96
	240 CM	5.28	69512	3.65	5.73	89027	5.07	5.48	94143	5.21
<u>Means</u>										
Winner		5.16	61168	3.15	5.42	81169	4.39	5.13	91922	4.70
Castille		5.38	69900	3.75	5.68	92185	5.21	5.45	92639	5.09
240 kg/ha	a N conv	5.33	65376	3.48	5.59	88576	4.93	5.38	88063	4.74
240 kg/ha	a N CM	5.21	65693	3.42	5.51	84895	4.66	4.87	95780	4.65
P-Value										
Variety		NS	0.032	0.002	NS	0.018	< 0.001	0.034	NS	0.013
Timing		NS	NS	NS	NS	NS	0.031	NS	NS	NS
Var x N ti	ming	NS	NS	NS	NS	NS	NS	0.053	NS	NS
SED (9 df	<u></u>									
Variety		0.134	3436	0.140	0.181	3831	0.104	0.128	3133	0.125
Timing		0.134	3436	0.140	0.181	3831	0.104	0.128	3133	0.125
Var x N ti	ming	0.189	4860	0.198	0.256	5418	0.148	0.181	4431	0.176

5.3 Experimental year 3 - 2007/8

5.3.1 Soil and crop N in February

Experiments were drilled at ADAS Boxworth (Cambridgeshire) on 5/9/07, ADAS High Mowthorpe (N. Yorkshire) on 6/9/07 and ADAS Rosemaund (Herefordshire) on 3/9/07. The soil mineral N and GAI of the experimental crops was measured in late January or early February. This showed that the crop N content and the soil mineral N of Winner and Castille were not significantly different. A summary of this information (Table 5.106) shows that the combined supply of N from the crop and soil in February was 66 kg N/ha at Boxworth, 48 kg N/ha at Rosemaund and 62 kg N/ha at High Mowthorpe.

Table 5.106. Soil N, crop N and Fertiliser requirement for canopy managed treatments

	Boxworth	High Mowthorpe	Rosemaund
Feb SMN (kg/ha)	58	38	12
Feb GAI	0.19	0.10	1.36
Crop N (kg/ha)	8	10	50
SNS (kg/ha)	66	48	62
Fert N for GAI 3.5	182	231	188
(kg/ha)			

SMN – soil mineral nitrogen

SNS - soil nitrogen supply - sum of SNS and crop N

5.3.2 N treatments

The amount of fertiliser N required to achieve the optimum GAI of 3.5 by flowering was calculated at 182 kg/ha at Boxworth, 231 kg/ha at High Mowthorpe and 188 kg/ha at Rosemaund based on the measurements of soil and crop N. At Rosemaund, the first dose for the Canopy Managed treatment was applied at the 2nd conventional split timing. This was designed to test the Canopy Management principals by investigating the effect of delaying N to a crop with a moderate sized canopy with a very low soil N supply. At Boxworth and High Mowthorpe it was estimated that the crop would not be able to take up all of the N required to acheve the optimum sized canopy by mid-flowering if the N applications were delayed until the 2nd conventional split timing. Therefore, 40 kg N/ha and 60 kg N/ha was applied at the 1st conventional split timing at Boxworth and High Mowthorpe respectively. After sufficient N had been applied to achieve the optimum GAI of 3.5 the remainder of the N was applied between yellow bud and early/mid flowering in late April/early May. The N applications in each split are described in Tables 5.107, 5.108 and 5.109. The dates of the N applications and Folicur treatment are described in Table 5.110.

Table 5.107. Boxworth N applications (kg N/ha)

N treatment	Management	1 st split	2 nd split	3 rd split	Total
1		0	0	0	0
2	Conventional	30	30	0	60
3	Conventional	60	60	0	120
4	Conventional	90	90	0	180
5	Conventional	120	120	0	240
6	Conventional	150	150	0	300
7	Conventional	180	180	0	360
8	Managed	40	20	0	60
9	Managed	40	80	0	120
10	Managed	40	140	0	180
11	Managed	40	140	60	240
12	Managed	40	140	120	300
13	Managed	40	140	180	360

Table 5.108. High Mowthorpe N applications (kg N/ha)

N treatment	Management	1 st split	2 nd split	3 rd split	Total
1		0	0	0	0
2	Conventional	30	30	0	60
3	Conventional	60	60	0	120
4	Conventional	90	90	0	180
5	Conventional	120	120	0	240
6	Conventional	150	150	0	300
7	Conventional	180	180	0	360
8	Managed	60	0	0	60
9	Managed	60	60	0	120
10	Managed	60	120	0	180
11	Managed	60	170	10	240
12	Managed	60	170	70	300
13	Managed	60	170	130	360

Table 5.109. Rosemaund N applications (kg N/ha)

N treatment	Management	1 st split	2 nd split	3 rd split	Total
1		0	0	0	0
2	Conventional	30	30	0	60
3	Conventional	60	60	0	120
4	Conventional	90	90	0	180
5	Conventional	120	120	0	240
6	Conventional	150	150	0	300
7	Conventional	180	180	0	360
8	Managed	0	60	0	60
9	Managed	0	120	0	120
10	Managed	0	180	0	180
11	Managed	0	180	60	240
12	Managed	0	180	120	300
13	Managed	0	180	180	360

Table 5.110. Timings of Nitrogen and Folicur treatments

	Boxworth	High Mowthorpe	Rosemaund
1 st N timing	27 Feb	6 March	4 March
2 nd N timing	2 nd April	9 April	31 March
3 rd N timing	21 April	6 May	14 April
Folicur timing	14 April	29 April	4 April
_	(0.5 l/ha)	(0.5 l/ha)	(1.0 l/ha)

5.3.3 Seed yield

At Boxworth, yields significantly (P < 0.001) differed with variety; Winner had a mean yield of 3.07 t/ha and Castille 3.26 t/ha (Table 5.111). Increasing N rates significantly (P < 0.001) increased yield. Averaged over all other treatments, yields significantly increased at each level of N from nil N (1.34 t/ha) to 180 kg/ha N (3.79 t/ha). Further increases were found up to the highest N rate of 360 kg/ha, where the average yield was 4.05 t/ha, although these differences were not significant (Table 5.111). N rate was also found to significantly (P < 0.05) interact with the Folicur treatment and N Management. Here, with increasing levels of N, yields increased more rapidly with a Folicur treatment or under canopy management.

At High Mowthorpe, overall, the variety Castillle yielded significantly (P < 0.001) higher than Winner, with yields of 3.31 and 2.94 t/ha, respectively (Table 5.112). Yields were significantly (P < 0.001) increased with higher N rates. With no N applied, average yields were 1.39 t/ha, but at the highest N rate (360 kg/ha), yields increased

to 3.88 t/ha. N management did not significantly affect yield. Folicur at 0.5 l/ha increased yield by 0.29 t/ha on average, although this effect was not significant.

At Rosemaund, significant (P < 0.001) differences were found between variety, N rate and N management treatments (Table 5.113). On average, Castille produced a yield of 4.18 t/ha compared to 3.95 t/ha produced by Winner. Higher N rates led to higher yields; yields ranged from 2.72 t/ha with nil N applied to 4.51 t/ha with 360 kg/ha N applied. For Winner the Conventionally N managed plots gave a higher yield (4.33 t/ha) than the Canopy Managed plots (4.03 t/ha). N management had no effect on Castille. Folicur increased the yield of Winner by 0.19 t/ha (P<0.05), with greater yield increases occurring at the higher N rates.

Table 5.111. Boxworth seed yields (t/ha @ 9% mc)

Variety	N rate	No Fol	icur		Folicur	(0.5 l/h	a)	Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
	Ng/ Ha	00110	OW	Wicari	CONV	OW	Wicari	Wicari	Wicarr	Wicari
Winner	0	1.32		1.32	1.10		1.10	1.21		1.21
Winner	60	2.05	1.96	2.00	2.01	2.04	2.02	2.03	2.00	2.01
Winner	120	2.87	2.95	2.91	3.07	3.05	3.06	2.97	3.00	2.98
Winner	180	3.70	3.75	3.73	3.58	3.86	3.72	3.64	3.81	3.72
Winner	240	3.46	3.72	3.59	3.89	4.08	3.98	3.67	3.90	3.79
Winner	300	3.96	3.57	3.76	3.75	4.03	3.89	3.85	3.80	3.83
Winner	360	3.98	3.92	3.95	4.02	3.84	3.93	4.00	3.88	3.94
Winner	Mean	3.05	3.03	3.04	3.06	3.14	3.10	3.05	3.08	3.07
Castille	0	1.44		1.44	1.51		1.51	1.48		1.48
Castille	60	2.21	2.41	2.31	2.32	2.37	2.35	2.27	2.39	2.33
Castille	120	3.04	3.23	3.14	3.00	3.49	3.25	3.02	3.36	3.19
Castille	180	3.73	3.91	3.82	3.71	4.10	3.90	3.72	4.00	3.86
Castille	240	3.50	3.42	3.46	3.91	4.17	4.04	3.71	3.80	3.75
Castille	300	4.08	4.15	4.11	4.21	3.75	3.98	4.14	3.95	4.05
Castille	360	4.54	3.95	4.25	4.31	3.88	4.09	4.42	3.92	4.17
Castille	Mean	3.22	3.22	3.22	3.28	3.32	3.30	3.25	3.27	3.26
Win+Cas	0	1.38		1.38	1.31		1.31	1.34		1.34
Win+Cas	60	2.13	2.18	2.16	2.17	2.20	2.18	2.15	2.19	2.17
Win+Cas	120	2.95	3.09	3.02	3.04	3.27	3.15	3.00	3.18	3.09
Win+Cas	180	3.72	3.83	3.77	3.65	3.98	3.81	3.68	3.90	3.79
Win+Cas	240	3.48	3.57	3.53	3.90	4.12	4.01	3.69	3.85	3.77
Win+Cas	300	4.02	3.86	3.94	3.98	3.89	3.94	4.00	3.87	3.94
Win+Cas	360	4.26	3.93	4.10	4.16	3.86	4.01	4.21	3.90	4.05
Win+Cas	Mean	3.13	3.12	3.13	3.17	3.23	3.20	3.15	3.18	3.16
-			ıc	oep.						
Treatment			df	SED	P- Value					
					Value					
Folicur			3	0.237	0.718					
Variety			75	0.045	<.001					
N rate			75	0.084	<.001					
N manager	nent		75	0.045	0.588					
Fol x Var			75	0.241	0.829					
Fol x Nrate			75	0.261	0.017					
Var x Nrate			75	0.201	0.485					
	=		75 75							
Fol x Man				0.241	0.407					
Var x Man			75 75	0.064	0.897					
Nrate x Ma			75 75	0.119	0.021					
Fol x Var x			75 75	0.287	0.718					
Fol x Var x	Man		7 5	0.250	0.762					
Fol x Nrate	x Man		75	0.287	0.994					
Var x Nrate	e x Man		75	0.168	0.466					
Fol x Var x	Nrate x N	/lan	75	0.333	0.222					

Table 5.112. High Mowthorpe seed yields (t/ha @ 9% mc)

Variety	N .	No Fol	icur		Folicur	(0.5 l/h	na)	Conv	CM	Grand
	rate kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Winner Winner Winner Winner Winner Winner Winner	0 60 120 180 240 300 360 Mean	1.29 1.87 2.85 3.53 3.25 3.37 3.40 2.79	2.08 2.70 3.07 3.34 3.59 3.56 2.80	1.29 1.97 2.78 3.30 3.30 3.48 3.48 2.80	1.23 2.29 3.17 3.72 3.81 3.79 3.89 3.13	2.17 3.09 3.45 3.75 3.54 3.94 3.02	1.23 2.23 3.13 3.59 3.78 3.67 3.92 3.08	1.26 2.08 3.01 3.63 3.53 3.58 3.65 2.96	2.12 2.89 3.26 3.55 3.57 3.75 2.91	1.26 2.10 2.95 3.44 3.54 3.57 3.70 2.94
Castille Castille Castille Castille Castille Castille Castille Castille Castille	0 60 120 180 240 300 360 Mean	1.48 2.43 3.10 3.53 3.76 3.82 3.95 3.15	2.62 2.95 3.54 3.74 3.92 3.80 3.15	1.48 2.52 3.03 3.53 3.75 3.87 3.88 3.15	1.58 2.45 3.49 3.90 4.23 4.00 4.19 3.41	2.95 3.40 4.03 4.00 4.44 4.28 3.53	1.58 2.70 3.44 3.97 4.12 4.22 4.24 3.47	1.53 2.44 3.30 3.71 4.00 3.91 4.07 3.28	2.78 3.17 3.78 3.87 4.18 4.04 3.34	1.53 2.61 3.23 3.75 3.93 4.05 4.06 3.31
Win+Cas Win+Cas Win+Cas Win+Cas Win+Cas Win+Cas	0 60 120 180 240 300 360 Mean	1.38 2.15 2.98 3.53 3.51 3.59 3.68 2.97	2.35 2.82 3.30 3.54 3.75 3.68 2.98	1.38 2.25 2.90 3.41 3.53 3.67 3.68 2.98	1.41 2.37 3.33 3.81 4.02 3.90 4.04 3.27	2.56 3.24 3.74 3.88 3.99 4.11 3.27	1.41 2.46 3.29 3.78 3.95 3.95 4.08 3.27	1.39 2.26 3.15 3.67 3.76 3.75 3.86 3.12	2.45 3.03 3.52 3.71 3.87 3.90 3.13	1.39 2.36 3.09 3.60 3.74 3.81 3.88 3.12
Treatmen	t		df	SED	P- Value					
Folicur Variety N rate N manage Fol x Var Fol x Nrat Var x Man Var x Man Nrate x M Fol x Var x Fol x Var x Fol x Var x Fol x Var x Fol x Nrat Var x Nrat	e te an x Nrate x Man e x Man te x Mar	1	3 75 75 75 75 75 75 75 75 75 75 75	0.140 0.043 0.080 0.043 0.147 0.175 0.113 0.147 0.061 0.113 0.208 0.159 0.208 0.160 0.263	0.125 <.001 <.001 0.911 0.665 0.158 0.66 0.969 0.22 0.288 0.934 0.165 0.972 0.403 0.675					

Table 5.113. Rosemaund seed yields (t/ha @ 9% mc)

Variety	N	No Foli	cur		Folicur	(1.0 l/h	a)	Conv	CM	Grand
	rate kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Winner Winner	0 60	2.63 3.675	3.605	2.63 3.64	2.56 3.789	3.769	2.56 3.78	2.60 3.73	3.69	2.60 3.71
Winner	120	3.702	3.865	3.78	4.008	4.186	4.10	3.86	4.03	3.94
Winner	180	4.366	3.816	4.09	4.287	4.492	4.39	4.33	4.15	4.24
Winner	240	4.019	4.115	4.07	4.509	4.302	4.41	4.26	4.21	4.24
Winner	300	4.373	4.438	4.41	4.46	4.586	4.52	4.42	4.51	4.46
Winner	360	4.307	4.404	4.36	4.767	4.336	4.55	4.54	4.37	4.45
Winner	Mean	3.87	3.84	3.85	4.05	4.03	4.04	3.96	3.94	3.95
Castille	0	3.00		3.00	2.69		2.69	2.85		2.85
Castille	60	4.345	3.981	4.16	3.859	3.603	3.73	4.10	3.79	3.95
Castille	120	4.251	4.147	4.20	4.556	4.354	4.46	4.40	4.25	4.33
Castille	180	4.805	4.447	4.63	4.59	4.129	4.36	4.70	4.29	4.49
Castille	240	4.571	4.271	4.42	4.768	4.596	4.68	4.67	4.43	4.55
Castille	300	4.81	4.111	4.46	4.853	4.291	4.57	4.83	4.20	4.52
Castille	360	4.632	4.511	4.57	4.843	4.288	4.57	4.74	4.40	4.57
Castille	Mean	4.34	4.07	4.21	4.31	3.99	4.15	4.33	4.03	4.18
Win+Cas	0	2.82		2.82	2.63		2.63	2.72		2.72
Win+Cas	60	4.01	3.79	3.90	3.82	3.69	3.76	3.92	3.74	3.83
Win+Cas	120	3.98	4.01	3.99	4.28	4.27	4.28	4.13	4.14	4.13
Win+Cas	180	4.59	4.13	4.36	4.44	4.31	4.37	4.51	4.22	4.37
Win+Cas	240	4.30	4.19	4.24	4.64	4.45	4.54	4.47	4.32	4.39
Win+Cas	300	4.59	4.27	4.43	4.66	4.44	4.55	4.62	4.36	4.49
Win+Cas	360	4.47	4.46	4.46	4.81	4.31	4.56	4.64	4.38	4.51
Win+Cas	Mean	4.11	3.95	4.03	4.18	4.01	4.10	4.14	3.98	4.06
Treatmen	t		df	SED	P- Value					
					value					
Folicur			3	0.170	0.717					
Variety			75	0.043	<.001					
N rate			75	0.081	<.001					
N manage	ement		75	0.043	<.001					
Fol x Var			75	0.175	0.005					
Fol x Nrat	е		75	0.200	0.013					
Var x Nra	te		75	0.114	0.429					
Fol x Man			75	0.175	0.859					
Var x Man	1		75	0.061	0.002					
Nrate x M			75	0.001	0.321					
Fol x Var			75 75							
			75 75	0.230 0.185	0.39					
Fol x Var					0.797					
Fol x Nrat			75 75	0.230	0.33					
Var x Nra			75 75	0.161	0.446					
Fol x Var	x Nrate:	x Man	75	0.281	0.61					

5.3.4 Oil content

At Boxworth, oil content significantly (P = 0.016) decreased with an increase in the N rate applied (Table 5.115). Linear regression showed a 0.42 % decrease in oil content with every 100 kg increase in N applied; the relationship was significant (P = 0.003). Folicur did not affect oil content (Table 5.115), nor were there any significant interations between Folicur and any other factor.

A significant (P < 0.001) decrease in oil content with an increased N rate was also found at High Mowthorpe (Table 5.116); at this site, oil content decreased by 0.73 % with every 100 kg increase in N applied. Neither Canopy Management nor Folicur affected oil content (Table 5.117)

At Rosemaund, as well as a significant (P < 0.001) decrease in oil content with increasing N applications, significant effects of variety (P < 0.001) and Canopy Management (P = 0.037) were found (Table 5.118). Here, Castille had, on average, oil contents 1.7% higher than Winner, and Conventional N timings, on average, produced slightly (0.4%), but significantly, higher oil contents than Canopy Management. Regression analysis showed a 1.0% decrease in oil content with each 100 kg increase in N applications.

Table 5.114.	Poyworth C	Vil contonts	10/ dr	(mattar)
1 able 5.114.	DOXWOLLILC	ni contents	1 70 UIV	mattern

Table 5	Table 5.114. Boxworth Oil contents (% dry matter)										
N Rate	Winne	er		Castille			Conv	СМ	Grand		
kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean		
0	41.5		41.5	40.5		40.5	41.0		41.0		
120	40.5	42.6	41.5	42.6	40.9	41.8	41.6	41.8	41.7		
240	41.6	39.1	40.3	40.3	41.1	40.7	40.9	40.1	40.5		
360	40.1	41.2	40.7	39.0	39.1	39.1	39.5	40.2	39.9		
Mean	40.9	41.1	41.0	40.6	40.4	40.5	40.8	40.8	40.8		
Treatm	nent			df	SED	P Value					
Variety	/			30	0.38	0.195					
Nitroge	en			30	0.53	0.016					
N man	agemei	nt		30	0.38	0.999					
Variety	x Nitro	ogen		30	0.76	0.201					
Variety	/ x Man	ageme	nt	30	0.53	0.615					
Nitroge	Nitrogen x Management				0.76	0.579					
Var x N	N x Mar	า		30	1.07	0.021					

Without Folicur

Table 5.115. Boxworth Oil contents (% dry matter) effects of Folicur

	Conver	Conventional		Managed timing		
N rate	Nil	Folicur	Nil	Folicur	Nil	Folicur
Winner 120	40.5	41.5	42.6	42.4	41.5	41.9
Winner 240	41.6	41.4	39.1	40.2	40.3	40.8
Castille 120	42.6	42.1	40.9	41.2	41.8	41.6
Castille 240	40.3	40.7	41.1	40.3	40.7	40.5
Mean	41.2	41.4	40.9	41.0	41.1	41.2
	df	SED	P- Value			
Folicur	2	0.51	0.842			
Folicur x Variety	4.77	0.64	0.442			
Folicur x N rate	4.77	0.64	0.981			
Folicur x N timing	4.77	0.64	0.893			

Table 5.116. High Mowthorpe Oil contents (% dry matter)

N Rate	Winne	er		Castill	е		Conv	CM	Grand		
kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean		
0	42.2		42.2	42.3		42.3	42.3		42.3		
120	41.5	41.5	41.5	41.7	42.0	41.8	41.6	41.8	41.7		
240	40.2	40.5	40.4	40.1	40.7	40.4	40.1	40.6	40.4		
360	40.3	40.2	40.3	39.5	40.2	39.8	39.9	40.2	40.1		
Mean	41.0	41.1	41.1	40.9	41.3	41.1	41.0	41.2	41.1		
Treatme	ent			df	SED	P Value	P Value				
Variety				45	0.15	0.838					
Nitroge	n			45	0.22	<.001					
N mana	igemen	t		45	0.15	0.119					
Variety	x Nitro	gen		45	0.31	0.357					
Variety x Management				45	0.22	0.26					
Nitroge	nageme	ent	45	0.31	0.732						
Var x N	x Man			45	0.44	0.845					

Without Folicur

Table 5.117. High Mowthorpe Oil contents (% dry matter) effects of Folicur

	Conventional		Manage timing	ed	Mean		
N rate	Nil	Folicur	Nil	Folicur	Nil	Folicur	
Winner 120	41.5	41.6	41.5	41.2	41.5	41.4	
Winner 240	40.2	39.8	40.5	39.9	40.4	39.9	
Castille 120	41.7	42.0	42.0	41.7	41.8	41.9	
Castille 240	40.1	40.5	40.7	39.5	40.4	40.0	
Mean	40.8	41.0	41.2	40.6	41.0	40.8	
	df	SED	P- Value				
Folicur	3	0.35	0.572				
Folicur x Variety	5.04	0.40	0.779				
Folicur x N rate	5.04	0.40	0.278				
Folicur x N timing	5.04	0.40	0.057				

Table 5.118. Rosemaund Oil contents (% dry matter)

N Rate	Winne	er		Castill	е		Conv	CM	Grand		
kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean		
0	39.5	39.5	39.5	37.6	37.6	37.6	38.6	38.6	38.6		
120	37.9	38.0	37.9	37.1	36.2	36.7	37.5	37.1	37.3		
240	37.5	35.8	36.7	35.2	34.6	34.9	36.3	35.2	35.8		
360	36.4	36.0	36.2	34.4	34.2	34.3	35.4	35.1	35.2		
Mean	37.8	37.3	37.6	36.1	35.7	35.9	36.9	36.5	36.7		
Treatme	ent			df	SED	P Value	Value				
Variety				45	0.21	<.001					
Nitroger	า			45	0.30	<.001					
N mana	gemen	t		45	0.21	0.037					
Variety	x Nitro	gen		45	0.42	0.68					
Variety	x Mana	agemer	nt	45	0.30	0.748					
Nitroger	n x Mar	nageme	ent	45	0.42	0.278					
Var x N	x Man			45	0.60	0.364					

Without Folicur

Table 5.119. Rosemaund Oil contents (% dry matter) effects of Folicur

	Conventional		Manage timing	ed	Mean	
N rate	Nil	Folicur	Nil	Folicur	Nil	Folicur
Winner 120	37.9	36.6	38.0	35.2	37.9	35.9
Winner 240	37.5	33.1	35.8	33.8	36.7	33.5
Castille 120	37.1	33.9	36.2	34.7	36.7	34.3
Castille 240	35.2	33.2	34.6 33.3		34.9	33.2
Mean	36.9	34.2	36.2	34.2	36.5	34.2
	df	SED	P- Value			
Folicur	3	0.75	0.053			
Folicur x Variety	4.69	0.84	0.402			
Folicur x N rate	4.69	0.84	0.774			
Folicur x N timing	4.69	0.84	0.305			

5.3.5 Optimum N rate

At Boxworth_regression analysis showed that fitting parallel curves for each treatment combination accounted for the most variation between N rate and yield (85%, P<0.001). The economically optimum N rate before taking account of oil premiums was 262 kg N/ha for all treatments and 256 kg N/ha after taking account of the oil content. At 256 kg N/ha Winner yielded 3.87 t/ha compared with 4.07 t/ha for Castille (Table 5.120). At optimum N the Canopy Managed treatments yielded 0.02 t/ha more than the Conventional treatments and Folicur increased yield by 0.08 t/ha.

At High Mowthorpe regression analysis showed that fitting parallel curves for each treatment combination accounted for the most variation between N rate and yield (85%, P<0.001). The economically optimum N rate before taking account of oil premiums was 245 kg N/ha for all treatments, and this decreased to 236 kg N/ha after taking account the oil content. At 236 kg N/ha Winner yielded 3.59 t/ha and Castille yielded 3.96 t/ha. At 236 kg N/ha the Canopy Managed and Conventional treatments had similar yields at 3.78 t/ha. Folicur at 0.5 l/ha increased yield by 0.3 t/ha.

At Rosemaund regression analysis showed that fitting parallel curves for each treatment combination accounted for the most variation between N rate and yield (70%, P<0.001). The economically optimum N rate before taking account of oil premiums was 146 kg N/ha for all treatments, which decreased to 128 kg N/ha after

accounting for oil content. At 128 kg N/ha Winner yielded 4.14 t/ha and Castille yielded 4.37 t/ha. At 128 kg N/ha the Canopy Managed N timing reduced yield of Castille by 0.29 t/ha and had no effect on Winner. Folicur increased the yield of Winner by 0.19 t/ha.

Table 5.120. Optimum N rate and yields at N opt.

	Boxworth	High	Rosemaund
		Mowthorpe	
Economically optimum N rate (kg/ha)	256	236	128
Winner Conventional N timings	3.82	3.42	4.01
Winner Managed N timings	3.80	3.43	3.98
Winner Conventional N timings with Folicur	3.84	3.76	4.20
Winner Managed N timings with Folicur	3.92	3.65	4.18
Castille Conventional N timings	4.00	3.78	4.49
Castille Managed N timings	3.99	3.78	4.21
Castille Conventional N timings with Folicur	4.06	4.04	4.45
Castille Managed N timings with Folicur	4.10	4.16	4.14

5.3.6 Growth analysis before stem extension

Crop assessments carried out before any N applications in February showed that the GAI, dry weight, tissue N concentration and N content of the crops did not differ between Winner and Castille at the 5% level of significance (Table 5.121). Each unit of GAI contained 46 kg N/ha at Boxworth and 37 kg N/ha at Rosemaund. At High Mowthorpe the crop was too small to calculate the relationship between GAI and crop N content. Previous studies have shown that the crop contains about 50 kg N/ha per unit of GAI.

Table 5.121. February measurements.

Boxworth

	GAI	Dry matter (t/ha)	N content (% of dry matter)	Crop N (kg/ha)
Winner	0.238	0.297	3.65	10.83
Castille	0.168	0.209	3.68	7.60
Mean	0.203	0.253	3.66	9.21
SED (df)	0.0376	0.0474	0.187	1.798
P-Value	0.16	0.159	0.873	0.17

High Mowthorpe

	GAI	Dry matter (t/ha)	N content (% of dry matter)	Crop N (kg/ha)
Winner	0.095	0.187	4.51	8.4
Castille	0.107	0.229	4.75	10.94
Mean	0.101	0.208	4.63	9.67
SED (df)	0.018	0.0176	0.366	1.22
P-Value	0.577	0.096	0.555	0.129

Rosemaund

	GAI	Dry matter (t/ha)	N content (% of dry matter)	Crop N (kg/ha)
Winner	1.59	1.78	2.87	51.1
Castille	1.14	1.66	2.95	49.0
Mean	1.36	1.72	2.91	50.0
SED (df)	0.293	0.15	0.0256	4.64
P-Value	0.222	0.481	0.049	0.678

5.3.7 GAI, dry weight and N content at mid-flowering

At Boxworth, increased N rates significantly (P < 0.01) increased the GAI and biomass of leaves and the total biomass at Boxworth (Table 5.122 and 5.123), and increased the biomass of stems and flowers/pods, although not significantly (P = 0.066 and 0.102 for stems and flowers, respectively). Stem, flowers/pods and total biomass data also showed significant (P < 0.05) interactions between N rate and variety (Table 5.123). With the stem and flowers/pods results, biomass increased with higher N rates in Castille, but decreased with higher N rates in Winner (Table 5.123). When total biomass data was studied, an increase in biomass was found with increased N in Winner, but this was very small compared to the increase found in Castille (Table 5.123).

The soil mineral N + crop N in February amounted to 66 kg N/ha. In theory this would have been expected to be taken up into the crop by mid-flowering and to produce a GAI of 1.3. The measurements at Nil N showed that the crop had taken up 41 kg N/ha and achieved a GAI of 0.56. It is possible that the very low plant population meant that the roots had not grown to a sufficient density to take up all of the soil N by flowering, or some soil N may have been leached. Applying 120 kg N/ha would be expected to increase N uptake by 72 kg N/ha and increase the GAI by 1.4 units. The measured increases were 52 kg N/ha and 1.1 GAI units.

At High Mowthorpe, GAIs of leaves, stems and whole plants were significantly (P < 0.001) increased with higher N rates (Table 5.124). The stem GAI data also showed a significant (P = 0.027) interaction between variety and N rate; the stems of Castille showed a greater increase in GAI with an increased N rate than Winner (Table 5.124). Increased N rates led to increased biomass in all parts of the plant, plus the total biomass, and there was a significant (P = 0.007) interaction between N rate and variety in the stems, with the data showing the same effects as the GAI data. There was also a significant (P = 0.025) variety x N rate interaction in the total biomass data, which again showed the same effects i.e. a greater increase with increased N in Castille (4.02 t/ha of total biomass) than Winner (2.84 t/ha of total biomass). However, despite the greater increase, the overall biomass for Winner was slightly higher than Castille because the biomass at 0 N was higher for Winner than Castille (Table 5.125).

The soil mineral N + crop N in February amounted to 48 kg N/ha. In theory this would have been expected to be taken up into the crop by mid-flowering and to produce a GAI of 0.96. The measurements at Nil N showed that the crop had taken up 31 kg N/ha and achieved a GAI of 0.65. The crop at this site grew very slowly during February and March and it is possible that some of the soil N leached before the crop had time to take it up. Applying 120 kg N/ha would be expected to increase N uptake by 66 kg N/ha and increase the GAI by 1.3 units. The measured increases were 67 kg N/ha and 2.2 GAI units.

At Rosemaund the GAIs of leaves, stems and the whole plant were significantly (P < 0.001) increased with increased N (Table 5.126). No interactions were found for GAI at this site. Leaf and flower/pod biomass was significantly (P < 0.01) increased with increased N at Rosemaund (Table 5.127).

The soil mineral N + crop N in February amounted to 62 kg N/ha. In theory this would have been expected to be taken up into the crop by mid-flowering and to produce a GAI of 1.24. The measurements at nil N showed that the crop had achieved a GAI of 1.04. Applying 120 kg N/ha would be expected to increase the GAI by 1.4 units. The measured increases averaged across Winner and Castille was 1.4 GAI units.

Table 5.122. Boxworth. Mid flowering green area indices

Variety	N rate	GAI lea	aves		GAI ste	ems		Total	GAI	
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
	Ŭ									
Winner	0	0.415		0.415	0.136		0.136	0.55		0.55
Winner	120	1.437	1.485	1.461	0.107	0.173	0.140	1.54	1.66	1.6
Winner	Mean	0.926	0.950	0.938	0.121	0.154	0.138	1.05	1.1	1.08
Castille	0	0.474		0.474	0.101		0.101	0.57		0.57
Castille	120	1.394	1.521	1.457	0.190	0.165	0.177	1.58	1.69	1.63
Castille	Mean	0.934	0.997	0.965	0.145	0.133	0.139	1.08	1.13	1.1
Win+Cas	0	0.444		0.444	0.118		0.118	0.56		0.56
Win+Cas	120	1.415	1.503	1.459	0.148	0.169	0.158	1.58	1.67	1.62
Win+Cas	Mean	0.930	0.974	0.952	0.133	0.144	0.138	1.06	1.12	1.09
				Б			Б			Б
Treatmen	t	df	SED	P	df	SED	P	df	SED	P
				value			value			value
Variety		14	0.1879	0.886	14	0.0262	0.961	14	0.209	0.893
N manage	ement	14	0.1879	0.819	14	0.0262	0.705	14	0.209	0.8
N_rate		14	0.1879	<.001	14	0.0262	0.15	14	0.209	<.001
Var x Mar	1	14	0.2658	0.917	14	0.0371	0.401	14	0.296	0.99
Var x Nra		14	0.2658	0.872	14	0.0371	0.189	14	0.296	0.98
	Man x Nrate		0.2658	0.819	14	0.0371	0.705	14	0.296	0.8
Var x Mar	ı x	1 1	0.0750	0.017						0.00
Nrate		14	0.3759	0.917	14	0.0525	0.401	14	0.419	0.99

Table 5.123. Boxworth. Mid flowering dry matter measurements

Variety	N rate	Leaf bi	omass (t	/ha)	Stem b	oiomass	(t/ha)	Flower	biomass	(t/ha)	Total b	iomass	(t/ha)
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Winner	0	0.376		0.376	1.95		1.95	0.487		0.487	2.81		2.81
Winner	120	0.839	0.938	0.888	1.37	2.02	1.70	0.307	0.475	0.391	2.52	3.43	2.97
Winner	Mean	0.608	0.657	0.632	1.66	1.98	1.82	0.397	0.481	0.439	2.67	3.12	2.89
Castille	0	0.382		0.382	1.28		1.28	0.265		0.265	1.93		1.93
Castille	120	0.972	0.946	0.959	2.58	2.22	2.40	0.662	0.464	0.563	4.21	3.63	3.92
Castille	Mean	0.677	0.664	0.670	1.93	1.75	1.84	0.464	0.365	0.414	3.07	2.78	2.93
Win+Cas	0	0.379		0.379	1.62		1.62	0.376		0.376	2.37		2.37
Win+Cas	120	0.906	0.942	0.924	1.98	2.12	2.05	0.485	0.470	0.477	3.37	3.53	3.45
Win+Cas	Mean	0.642	0.660	0.651	1.80	1.87	1.83	0.430	0.423	0.427	2.87	2.95	2.91
Treatment		df	SED	F prob	df	SED	F prob	df	SED	F prob	df	SED	F prob
Variety		14	0.0868	0.666	14	0.217	0.925	14	0.0578	0.675	14	0.332	0.92
N managei	ment	14	0.0868	0.839	14	0.217	0.742	14	0.0578	0.898	14	0.332	0.806
N_rate		14	0.0868	<.001	14	0.217	0.066	14	0.0578	0.102	14	0.332	0.006
Var x Man		14	0.1227	0.723	14	0.306	0.268	14	0.0818	0.135	14	0.47	0.281
Var x Nrate	Э	14	0.1227	0.713	14	0.306	0.007	14	0.0818	0.004	14	0.47	0.016
Man x Nrat	te	14	0.1227	0.839	14	0.306	0.742	14	0.0818	0.898	14	0.47	0.806
Var x Man	x Nrate	14	0.1736	0.723	14	0.433	0.268	14	0.1157	0.135	14	0.665	0.281

Table 5.124. High Mowthorpe. Mid flowering green area indices

Variety	N rate	GAI lea	aves		GAI ste	ems		Total	GAI	
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
'										
Winner	0	0.461		0.461	0.345		0.345	0.81		0.81
Winner	120	2.010	2.257	2.134	0.694	0.744	0.719	2.70	3.00	2.85
Winner	Mean	1.236	1.359	1.297	0.519	0.544	0.532	1.76	1.90	1.83
Castille	0	0.263		0.263	0.227		0.227	0.49		0.49
Castille	120	1.779	2.079	1.929	0.963	0.820	0.892	2.74	2.90	2.82
Castille	Mean	1.021	1.171	1.096	0.595	0.524	0.560	1.62	1.70	1.66
\A('' - 0	•	0.040		0.040	0.007		0.007	0 (5		0.75
Win+Cas	0	0.362	0.470	0.362	0.286	0.700	0.286	0.65	0.05	0.65
Win+Cas	120	1.894	2.168	2.031	0.828	0.782	0.805	2.72	2.95	2.84
Win+Cas	Mean	1.128	1.265	1.197	0.557	0.534	0.546	1.69	1.80	1.74
				Р			Р			Р
Treatment	t	df	SED	value	df	SED	value	df	SED	value
				value			varac			value
Variety		21	0.1525	0.201	21	0.0612	0.654	21	0.158	0.284
N manage	ement	21	0.1525	0.379	21	0.0612	0.71	21	0.158	0.478
N_rate		21	0.1525	<.001	21	0.0612	<.001	21	0.158	<.001
Var x Man		21	0.2157	0.931	21	0.0865	0.438	21	0.223	0.826
Var x Nrat	te	21	0.2157	0.984	21	0.0865	0.027	21	0.223	0.379
Man x Nra	Man x Nrate		0.2157	0.379	21	0.0865	0.71	21	0.223	0.478
Var x Man x		21	0.305	0.931	21	0.1223	0.438	21	0.316	0.826
Nrate		_ '		3.701	_ '	0.1220	5. 100	_ '	5.510	0.020

Table 5.125. High Mowthorpe. Mid flowering dry matter measurements

Variety	N rate	Leaf bi	omass (t	/ha)	Stem b	oiomass	(t/ha)	Flower	biomass	(t/ha)	Total b	Total biomass (t/ha)		
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	
Winner	0	0.311		0.311	2.12		2.12	0.633		0.633	3.06		3.06	
Winner	120	0.953	1.034	0.993	4.07	3.65	3.86	1.083	1.016	1.049	6.1	5.7	5.9	
Winner	Mean	0.632	0.673	0.652	3.09	2.89	2.99	0.858	0.824	0.841	4.58	4.38	4.48	
Castille	0	0.217		0.217	1.55		1.55	0.509		0.509	2.27		2.27	
Castille	120	0.872	0.876	0.874	4.45	4.20	4.33	1.282	0.896	1.089	6.61	5.97	6.29	
Castille	Mean	0.544	0.546	0.545	3.00	2.87	2.94	0.895	0.702	0.799	4.44	4.12	4.28	
Win+Cas	0	0.264		0.264	1.84		1.84	0.571		0.571	2.67		2.67	
Win+Cas	120	0.913	0.955	0.934	4.26	3.93	4.09	1.182	0.956	1.069	6.35	5.84	6.1	
Win+Cas	Mean	0.588	0.610	0.599	3.05	2.88	2.96	0.877	0.763	0.820	4.51	4.25	4.38	
				_			_			_				
Treatment		df	SED	F prob	df	SED	F prob	df	SED	F prob	df	SED	F prob	
				ргов			ргов			prob			prob	
Variety		21	0.074	0.163	21	0.174	0.772	21	0.0682	0.54	21	0.244	0.421	
N manager	ment	21	0.074	0.777	21	0.174	0.348	21	0.0682	0.111	21	0.244	0.301	
N_rate		21	0.074	<.001	21	0.174	<.001	21	0.0682	<.001	21	0.244	<.001	
Var x Man		21	0.1046	0.797	21	0.246	0.823	21	0.0965	0.256	21	0.346	0.81	
Var x Nrate	Э	21	0.1046	0.871	21	0.246	0.007	21	0.0965	0.244	21	0.346	0.025	
Man x Nrat	e	21	0.1046	0.777	21	0.246	0.348	21	0.0965	0.111	21	0.346	0.301	
Var x Man	x Nrate	21	0.1479	0.797	21	0.348	0.823	21	0.1364	0.256	21	0.489	0.81	

Table 5.126. Rosemaund. Mid flowering green area indices

Variety	N rate	GAI lea	aves		GAI ste	ems		Total	GAI	
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Winner	0	0.760		0.760	0.242		0.242	1.00		1.00
Winner	120	2.066	2.202	2.134	0.436	0.367	0.401	2.50	2.57	2.54
Winner	Mean	1.413	1.481	1.447	0.339	0.304	0.321	1.75	1.79	1.77
Castille	0	0.786		0.786	0.282		0.282	1.07		1.07
Castille	120	1.918	1.938	1.928	0.411	0.333	0.372	2.33	2.27	2.30
Castille	Mean	1.352	1.362	1.357	0.346	0.307	0.327	1.70	1.67	1.68
					0.010		0.040			
Win+Cas	0	0.773		0.773	0.262		0.262	1.04		1.04
Win+Cas	120	1.992	2.070	2.031	0.423	0.350	0.387	2.42	2.42	2.42
Win+Cas	Mean	1.383	1.422	1.402	0.342	0.306	0.324	1.73	1.73	1.73
Treatmen	t	df	SED	P value	df	SED	P value	df	SED	P value
				value			value			value
Variety		21	0.1069	0.409	21	0.024	0.826	21	0.123	0.498
N manage	ement	21	0.1069	0.721	21	0.024	0.142	21	0.123	0.987
N rate		21	0.1069	<.001	21	0.024	<.001	21	0.123	<.001
Var x Man	1	21	0.1512	0.789	21	0.034	0.927	21	0.174	0.802
Var x Nrat	te	21	0.1512	0.29	21	0.034	0.166	21	0.174	0.234
Man x Nra	Man x Nrate		0.1512	0.721	21	0.034	0.142	21	0.174	0.987
Var x Man Nrate	ιX	21	0.2138	0.789	21	0.048	0.927	21	0.245	0.802

Table 5.127. Rosemaund. Mid flowering dry matter measurements

Variety	N rate	Leaf bi	omass (t	/ha)	Stem l	oiomass	(t/ha)	Flower	biomass	(t/ha)	Total biomass (t/ha)		
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Winner	0	0.682		0.682	†			0.435		0.435	†		
Winner	120	1.572	1.729	1.651				0.497	0.553	0.525			
Winner	Mean	1.127	1.205	1.166				0.466	0.494	0.480			
Castille	0	0.676		0.676				0.472		0.472			
Castille	120	1.441	1.600	1.520				0.472	0.510	0.472			
Castille	Mean	1.058	1.138	1.098				0.530	0.491	0.511			
Castilic	MCarr	1.030	1.130	1.070				0.550	0.471	0.511			
Win+Cas	0	0.679		0.679				0.454		0.454			
Win+Cas	120	1.506	1.664	1.585				0.542	0.531	0.537			
Win+Cas	Mean	1.093	1.172	1.132				0.498	0.493	0.495			
				_			_			_			_
Treatment		df	SED	F	df	SED	F	df	SED	F	df	SED	F
				prob			prob			prob			prob
Variety		21	0.0748	0.374				21	0.0274	0.275			
N manager	ment	21	0.0748	0.303				21	0.0274	0.842			
N_rate		21	0.0748	<.001				21	0.0274	0.006			
Var x Man		21	0.1058	0.994				21	0.0387	0.236			
Var x Nrate	е	21	0.1058	0.413				21	0.0387	0.82			
Man x Nrat	te	21	0.1058	0.303				21	0.0387	0.842			
Var x Man	x Nrate	21	0.1497	0.994				21	0.0547	0.236			

[†] error occurred during dry matter determination

Table 5.128. Boxworth. Mid flowering measurement of nitrogen concentration in dry plant material on Treatments 1, 3 and 9 without Folicur.

Variety	N rate	Leaf N%			Other plant material N %			Total crop N (kg/ha)		
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Winner	0	2.77		2.77	1.35		1.35	43		43
Winner	120	4.23	4.24	4.24	2.29	2.27	2.28	74	96	85
Winner	Mean	3.50	3.51	3.50	1.82	1.81	1.81	59	68	63
Castille	0	3.34		3.34	1.67		1.67	39		39
Castille	120	3.73	4.23	3.98	1.94	2.31	2.12	99	102	101
Castille	Mean	3.54	3.78	3.66	1.80	1.99	1.90	67	67	67
Win+Cas	0	3.06		3.06	1.51		1.51	41		41
Win+Cas	120	3.98	4.23	4.11	2.11	2.29	2.20	87	99	93
Win+Cas	Mean	3.52	3.64	3.58	1.81	1.90	1.86	63	67	65
Treatment		df	SED	Ρ.	df	SED	Ρ.	df	SED	Ρ.
			022	value			value		325	value
Maniak.		14	0.157	0.24	14	0.005	0.247	1.4	22.4	0 / 11
Variety			0.157	0.34	l	0.085	0.347	14	23.4	0.611
N management		14	0.157	0.439	14	0.085	0.319	14	23.4	0.57
N_rate		14	0.157	<.001	14	0.085	<.001	14	23.4	<.001
Var x Man		14	0.222	0.445	14	0.120	0.269	14	33.1	0.561
Var x Nrate		14	0.222	0.021	14	0.120	0.013	14	33.1	0.188
Man x Nrate		14	0.222	0.439	14	0.120	0.319	14	33.1	0.57
Var x Man x Nrate		14	0.314	0.445	14	0.170	0.269	14	46.8	0.561

Table 5.129. High Mowthorpe. Mid flowering measurement of nitrogen concentration in dry plant material on Treatments 1, 3 and 9 without Folicur.

Variety	N rate	Leaf N	l%		Other p	olant ma	terial N	Total ((kg/ha	crop N	
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Winner	0	2.47		2.47	1.06		1.06	37		37
Winner	120	3.07	3.15	3.11	1.36	1.77	1.56	99	115	107
Winner	Mean	2.77	2.81	2.79	1.21	1.41	1.31	65	71	68
Castille	0	2.27		2.27	1.00		1.00	26		26
Castille	120	3.03	2.80	2.91	1.09	1.24	1.16	89	88	88
Castille	Mean	2.65	2.54	2.59	1.04	1.12	1.08	55	54	54
Win+Cas	0	2.37		2.37	1.03		1.03	31		31
Win+Cas	120	3.05	2.97	3.01	1.22	1.50	1.36	94	101	98
Win+Cas	Mean	2.71	2.67	2.69	1.13	1.27	1.20	60	63	61
Treatmen	t	df	SED	Ρ.	df	SED	Ρ.	df	SED	Ρ.
				value			value			value
Variati		21	0.005	0.054	1 1	0.071	0.004	21	10.4	0.017
Variety		21	0.095	0.054	14	0.071	0.004	21	10.4	0.017
N manage	ement	21	0.095	0.696	14	0.071	0.063	21	10.4	0.7
N_rate		21	0.095	<.001	14	0.071	<.001	21	10.4	<.001
Var x Man	-	21	0.134	0.438	14	0.101	0.376	21	14.7	0.314
Var x Nra	te	21	0.134	0.99	14	0.101	0.026	21	14.7	0.548
Man x Nra	ate	21	0.134	0.696	14	0.101	0.063	21	14.7	0.7
Var x Man Nrate	ı X	21	0.190	0.438	14	0.142	0.376	21	20.8	0.314

Table 5.130. Rosemaund. Mid flowering measurement of nitrogen concentration in dry plant material on Treatments 1, 3 and 9 without Folicur.

Variety	N rate	Leaf N	1%		Other p	olant ma	terial N	Total (kg/ha	crop N	
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Winner	0	2.40		2.40	1.65		1.65	†		
Winner	120	4.03	4.11	4.07	2.57	2.26	2.41			
Winner	Mean	3.21	3.25	3.23	2.11	1.96	2.03			
Castille	0	2.40		2.40	1.52		1.52			
Castille	120	3.70	4.61	4.16	2.40	2.53	2.47			
Castille	Mean	3.05	3.51	3.28	1.96	2.03	1.99			
Win+Cas	0	2.40		2.40	1.59		1.59			
Win+Cas	120	3.87	4.36	4.11	2.48	2.40	2.44			
Win+Cas	Mean	3.13	3.38	3.26	2.04	1.99	2.01			
				_			_			_
Treatmen	t	df	SED	P	df	SED	P	df	SED	P
				value			value			value
Variety		21	0.102	0.649	21	0.142	0.778			
N manage	ement	21	0.102	0.025	21	0.142	0.763			
N_rate		21	0.102	<.001	21	0.142	<.001			
Var x Man	1	21	0.145	0.055	21	0.201	0.453			
Var x Nrat		21	0.145	0.684	21	0.201	0.522			
Man x Nra	ite	21	0.145	0.025	21	0.201	0.763			
Var x Man Nrate		21	0.204	0.055	21	0.284	0.453			

† error occurred during dry matter determination

5.3.8 Light interception at mid-flowering

At Boxworth, the amount of light reflected by the flowers was significantly reduced by the Canopy Management treatment (Table 5.131), which indicates that this treatment reduced the size of the flowering layer. This was supported by the observation that Canopy Management also resulted in more light penetrating through the flower layer to the green leaves, and did not affect the amount of light reaching the ground (Table 5.132). Castille reflected more light than Winner (P<0.001) and Folicur caused a reduction in the amount of light reflected for Conventionally managed Winner and Canopy Managed Castille. Increasing N rate increased the amount of light reflected and intercepted by the flowers.

At High Mowthorpe, Canopy Management also reduced the amount of light reflected by the flowers (Table 5.134) and reduced the amount of light intercepted by the flowering layer. However Canopy Management was not observed to affect the amount of light transmitted to the ground (Table 5.135). Increasing N rate increased the amount of light reflected and intercepted by the flowers. Variety did not affect the amount of light reflected or intercepted.

At Rosemaund, Canopy management significantly reduced the amount of light reflected and intercepted by the flowers (Table 5.137 and 5.138). Canopy Management reduced the amount of light reflected from the flowers more at higher N rates. Increasing N rate increased the amount of light reflected and intercepted by the flowers. Variety did not significantly affect the amount of light reflected or intercepted.

Table 5.131. Boxworth. Percentage of light reflected from flowers

Variety	N rate	No Foli	cur		Folicur (0.5 l/ha	a)	Conv	CM	Grand
,	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	9.1		9.1	8.4		8.4	8.7		8.7
Winner	60	10.4	10.8	10.6	9.5	10.3	9.9	9.9	10.5	10.2
Winner	180	12.1	11.5	11.8	11.0	11.4	11.2	11.5	11.5	11.5
Winner	300	12.3	11.2	11.8	11.1	10.5	10.8	11.7	10.8	11.3
Winner	Mean	11.0	10.6	10.8	10.0	10.1	10.1	10.5	10.4	10.4
Castille	0	10.1		10.1	8.7		8.7	9.4		9.4
Castille	60	11.1	11.1	11.1	11.1	10.1	10.6	11.1	10.6	10.8
Castille	180	12.2	12.3	12.3	11.8	11.4	11.6	12.0	11.8	11.9
Castille	300	12.9	12.0	12.4	13.9	10.3	12.1	13.4	11.2	12.3
Castille	Mean	11.6	11.4	11.5	11.4	10.1	10.7	11.5	10.7	11.1
Win+Cas	0	9.6			8.5			9.1		
Win+Cas	60			9.6	0.0		8.5			9.1
		10.8	11.0	10.9	10.3	10.2	10.2	10.5	10.6	10.5
Win+Cas	180	12.1	11.9	12.0	11.4	11.4	11.4	11.8	11.7	11.7
Win+Cas	300	12.6	11.6	12.1	12.5	10.4	11.4	12.6	11.0	11.8
Win+Cas	Mean	11.3	11.0	11.1	10.7	10.1	10.4	11.0	10.6	10.8
- .			16	OED.						
Treatment	Ţ		df	SED	P-Value					
Folicur			2	0.5771	0.329					
Variety			60	0.1739	<.001					
N manage	ement		60	0.1739	0.024					
Nrate			60	0.2459	<.001					
Fol x Var			2.38	0.6027	0.936					
Fol x Man			2.38	0.6027	0.414					
Var x Man	1		60	0.2459	0.073					
Fol x Nrat	e		3.23	0.651	0.81					
Var x Nrat	te		60	0.3477	0.717					
Man x Nra	ite		60	0.3477	0.004					
Fol x Var			3.23	0.651	0.029					
Fol x Var			5.28	0.738	0.595					
Fol x Man			5.28	0.738	0.621					
Var x Man Fol x Var :			60	0.4918	0.429					
Nrate	A IVIAIT A		10.5	0.8868	0.495					
-										

Table 5.132. Boxworth. Fraction of light interception at base of flower canopy

Variety	N rate	No Fol	icur		Folicur	(0.5 l/l	na)	Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	32.2		32.2	24.5		24.5	28.3		28.3
Winner	60	42.6	47.5	45.0	43.1	38.3	40.7	42.9	42.9	42.9
Winner	180	53.8	55.8	54.8	60.0	55.4	57.7	56.9	55.6	56.3
Winner	300	65.0	56.9	61.0	67.2	63.9	65.5	66.1	60.4	63.2
Winner	Mean	48.4	48.1	48.2	48.7	45.5	47.1	48.6	46.8	47.7
Castille	0	29.0		29.0	30.3		30.3	29.7		29.7
Castille	60	45.3	42.7	44.0	45.3	46.0	45.6	45.3	44.3	44.8
Castille	180	55.5	57.5	56.5	63.1	59.9	61.5	59.3	58.7	59.0
Castille	300	63.3	56.6	59.9	67.8	58.3	63.0	65.5	57.4	61.5
Castille	Mean	48.3	46.5	47.4	51.6	48.6	50.1	49.9	47.5	48.7
Win+Cas	0	20.7		20.7	07.4		07.4	20.0		20.0
Win+Cas		30.6		30.6	27.4		27.4	29.0		29.0
	60	43.9	45.1	44.5	44.2	42.1	43.2	44.1	43.6	43.8
Win+Cas	180	54.7	56.6	55.7	61.5	57.7	59.6	58.1	57.2	57.6
Win+Cas	300	64.1	56.7	60.4	67.5	61.1	64.3	65.8	58.9	62.4
Win+Cas	Mean	48.3	47.3	47.8	50.2	47.1	48.6	49.2	47.2	48.2
_										
Treatmen	t		df	SED	P-Value	9				
Folicur			2	3.568	0.843					
Variety			60	1.21	0.384					
N manage	ement		60	1.21	0.091					
Nrate			60	1.712	<.001					
Fol x Var			2.49	3.767	0.115					
Fol x Man			2.49	3.767	0.406					
Var x Mar	1		60	1.712	0.79					
Fol x Nrat	e		3.61	4.138	0.09					
Var x Nra	te		60	2.421	0.576					
Man x Nra	ate		60	2.421	0.156					
Fol x Var	x Man		3.61	4.138	0.722					
Fol x Var	X									
Nrate			6.38	4.794	0.458					
Fol x Man Nrate	X		6.38	4.794	0.744					
Var x Man	ı x		0.30	4./74	0.744					
Nrate			60	3.423	0.972					
Fol x Var	x Man x	Nrate	13.52	5.891	0.51					

Table 5.133. Boxworth. Fraction of light interception at ground level.

Variety	N	No Fol	licur		Folicur	(0.5 l/h	na)	Conv	CM	Grand
	rate kg/ha	Conv	CM	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Winner	0	60.2		60.2	53.0		53.0	56.6		56.6
Winner	60	76.8	74.9	75.8	67.6	72.2	69.9	72.2	73.5	72.9
Winner	180	91.3	92.8	92.1	90.5	91.0	90.7	90.9	91.9	91.4
Winner	300	93.8	94.4	94.1	94.4	91.9	93.1	94.1	93.2	93.6
Winner	Mean	80.5	80.6	80.6	76.4	77.0	76.7	78.5	78.8	78.6
Castille	0	56.1		56.1	48.7		48.7	52.4		52.4
Castille	60	72.5	73.2	72.9	72.7	73.2	73.0	72.6	73.2	72.9
Castille	180	90.8	90.6	90.7	89.6	90.6	90.1	90.2	90.6	90.4
Castille	300	92.1	91.7	91.9	93.1	89.6	91.3	92.6	90.7	91.6
Castille	Mean	77.9	77.9	77.9	76.0	75.5	75.8	76.9	76.7	76.8
Win+Cas	0	58.1		58.1	50.8		50.8	54.5		54.5
Win+Cas	60		74.4			70.7			70.4	
Win+Cas	180	74.6	74.1	74.3	70.2	72.7	71.4	72.4	73.4	72.9
		91.1	91.7	91.4	90.1	90.8	90.4	90.6	91.2	90.9
Win+Cas	300	92.9	93.1	93.0	93.7	90.8	92.2	93.3	91.9	92.6
Win+Cas	Mean	79.2	79.2	79.2	76.2	76.3	76.2	77.7	77.8	77.7
Treatmen	t		df	SED						
					P-Value	Э				
Folicur			2	2.352	0.332					
Variety			60	1.024	0.082					
N manage	ment		60	1.024	0.96					
Nrate	incit		60	1.448	<.001					
Fol x Var			2.83	2.565	0.394					
Fol x			2.00	2.000	0.071					
Man			2.83	2.565	0.991					
Var x Man	1		60	1.448	0.78					
Fol x Nrat	е		4.87	2.945	0.097					
Var x Nra	te		60	2.048	0.498					
Man x Nra	ite		60	2.048	0.849					
Fol x Var			4.87	2.945	0.792					
Fol x Var : Nrate	X		10 22	3.587	0.682					
Fol x Man	×		10.23	3.367	0.002					
Nrate			10.23	3.587	0.766					
Var x Man	ı X									
Nrate			60	2.896	0.999					
Fol x Var	x Man x	Nrate	23.26	4.61	0.875					

Table 5.134. Mowthorpe. Percentage of light reflected from flowers

Variety	N rate	No Fo	licur		Folicur	(0.5 1/1	na)	Conv	CM	Grand
	kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Mean	Mean	Mean
M/imm an	0	10.0			22.0			01.1		
Winner	0	19.3		19.3	22.9		22.9	21.1		21.1
Winner	60	19.7	20.1	19.9	23.6	16.1	19.9	21.6	18.1	19.9
Winner	180 300	23.5	19.9	21.7	22.0	21.5	21.7	22.8	20.7	21.7
Winner Winner	Mean	22.3	22.2	22.3	20.9	26.0	23.4	21.6	24.1	22.8
vviiiiei	Mean	21.2	20.4	20.8	22.4	21.6	22.0	21.8	21.0	21.4
Castille	0	18.5		18.5	14.2		14.2	16.3		16.3
Castille	60	21.7	13.4	17.5	26.9	24.1	25.5	24.3	18.7	21.5
Castille	180	22.3	19.8	21.1	27.6	20.1	23.9	25.0	20.0	22.5
Castille	300	21.5	22.0	21.8	22.9	18.1	20.5	22.2	20.1	21.1
Castille	Mean	21.0	18.4	19.7	22.9	19.1	21.0	22.0	18.8	20.4
Win+Cas	0	18.9		18.9	18.6		18.6	18.7		18.7
Win+Cas	60	20.7	16.7	18.7	25.3	20.1	22.7	23.0	18.4	20.7
Win+Cas	180	20.7	19.8	21.4	24.8	20.1	22.7	23.0	20.3	20.7
Win+Cas	300	21.9	22.1	22.0	21.9	22.0		21.9		22.0
Win+Cas	Mean	21.9	22. i 19.4	20.2	22.6	20.4	22.0 21.5	21.9	22.1 19.9	20.9
					1 22.0	20.1	21.0	1	.,.,	1 20.7
Treatment			df	SED	P-Valu	е				
Folicur			3	7.519	0.877					
Variety			90	1.021	0.315					
N managem	ent		90	1.021	0.056					
Nrate			90	1.444	0.077					
Fol x Var			3.11	7.588	0.953					
Fol x Man			3.11	7.588	0.787					
Var x Man			90	1.444	0.242					
Fol x Nrate			3.34	7.724	0.436					
Var x Nrate			90	2.042	0.124					
Man x Nrate	:		90	2.042	0.243					
Fol x Var x I	Man		3.34	7.724	0.761					
Fol x Var x I	Vrate		3.82	7.99	0.045					
Fol x Man x	Nrate		3.82	7.99	0.995					
Var x Man x	Nrate		90	2.888	0.881					
Fol x Var x N	Man x Nr	ate	4.88	8.495	0.167					

Table 5.135. High Mowthorpe. Percentage of light intercepted at base of canopy

Variety	N	No Fol	icur		Folicur	(0.5 l/h	na)	Conv	CM	Grand
	rate kg/ha	Conv	CM	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Winner	0	16.5		16.5	18.6		18.6	17.6		17.6
Winner	60	37.1	35.8	36.4	44.3	34.4	39.3	40.7	35.1	37.9
Winner	180	52.1	51.7	51.9	60.4	63.1	61.8	56.3	57.4	56.8
Winner	300	58.5	61.0	59.7	64.8	62.5	63.7	61.6	61.8	61.7
Winner	Mean	41.0	41.3	41.2	47.0	44.6	45.8	44.0	43.0	43.5
Castille	0	14.0		14.0	19.4		19.4	16.7		16.7
Castille	60	42.2	40.5	41.4	44.0	41.1	42.6	43.1	40.8	42.0
Castille	180	58.7	58.2	58.5	63.6	64.6	64.1	61.2	61.4	61.3
Castille	300	58.8	64.0	61.4	62.9	70.9	66.9	60.9	67.5	64.2
Castille	Mean	43.4	44.2	43.8	47.5	49.0	48.2	45.5	46.6	46.0
Win+Cas	0	15.3		15.3	19.0		19.0	17.1		17.1
Win+Cas	60	39.6	38.1	38.9	44.2	37.7	40.9	41.9	37.9	39.9
Win+Cas	180	55.4	54.9	55.2	62.0	63.8	62.9	58.7	59.4	59.1
Win+Cas	300	58.6	62.5	60.6	63.9	66.7	65.3	61.3	64.6	62.9
Win+Cas	Mean	42.2	42.7	42.5	47.3	46.8	47.0	44.8	44.8	44.8
Treatment			df	SED	P-Valu	Э				
Folicur			3	2.578	0.175					
Variety			90	1.248	0.046					
N managen	nent		90	1.248	0.989					
Nrate			90	1.765	<.001					
Fol x Var			4.56	2.864	0.916					
Fol x Man			4.56	2.864	0.715					
Var x Man			90	1.765	0.38					
Fol x Nrate			8.56	3.364	0.434					
Var x Nrate	:		90	2.495	0.415					
Man x Nrate	е		90	2.495	0.228					
Fol x Var x	Man		8.56	3.364	0.496					
Fol x Var x			19.19	4.188	0.716					
Fol x Man x			19.19	4.188	0.781					
Var x Man >			90	3.529	0.717					
Fol x Var x	wan x Nr	ate	43.3	5.477	0.87					

Table 5.136. Mowthorpe. Percentage of light intercepted at ground level

Variety	N	No Fo	licur		Folicur	(0.5 l/h	na)	Conv	CM	Grand
	rate kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Minnor	0	42.1		42.1	40.7		40.7	42.0		42.0
Winner	0	43.1	<i>(</i> 7.0	43.1	42.7	(0.2	42.7	42.9	/O 1	42.9
Winner	60 180	67.9	67.9	67.9	73.5	68.3 86.6	70.9	70.7 86.0	68.1 86.6	69.4 86.3
Winner	300	83.1 84.1	86.5 87.0	84.8 85.5	88.9 90.5	85.9	87.8 88.2	87.3	86.5	86.9
Winner Winner	Mean	69.5	71.1	70.3	73.9	70.9	oo.∠ 72.4	71.7	71.0	71.4
vviiiiei	ivicari	09.5	71.1	70.3	73.7	70.9	12.4	/ 1./	71.0	71.4
Castille	0	42.2		42.2	42.7		42.7	42.5		42.5
Castille	60	72.4	73.5	72.9	66.2	67.1	66.6	69.3	70.3	69.8
Castille	180	86.2	86.9	86.5	84.0	88.2	86.1	85.1	87.5	86.3
Castille	300	86.8	88.7	87.7	86.6	91.3	88.9	86.7	90.0	88.3
Castille	Mean	71.9	72.8	72.4	69.9	72.3	71.1	70.9	72.6	71.7
Win+Cas	0	42.6		42.6	42.7		42.7	42.7		42.7
Win+Cas	60	70.1	70.7	70.4	69.8	67.7	68.8	70.0	69.2	69.6
Win+Cas	180	84.6	86.7	85.7	86.5	87.4	86.9	85.5	87.1	86.3
Win+Cas	300	85.4	87.9	86.6	88.6	88.6	88.6	87.0	88.2	87.6
Win+Cas	Mean	70.7	72.0	71.3	71.9	71.6	71.7	71.3	71.8	71.5
		•	16	055	1			•		ı
Treatment			df	SED	P-Valu	e				
					i vaia	C				
Folicur			3	4.139	0.928					
Variety			90	1.31	0.782					
N managen	nent		90	1.31	0.71					
Nrate			90	1.852	<.001					
Fol x Var			3.63	4.341	0.206					
Fol x Man			3.63	4.341	0.551					
Var x Man			90	1.852	0.356					
Fol x Nrate			5.06	4.72	0.784					
Var x Nrate			90	2.62	0.964					
Man x Nrate Fol x Var x			90 5.06	2.62 4.72	0.918					
Fol x Var x			5.06 8.54	5.398	0.246 0.553					
Fol x Man x			8.54	5.398	0.983					
Var x Man x			90	3.705	0.942					
Fol x Var x		ate	17.47	6.547	0.897					

Table 5.137. Rosemaund. Percentage of light reflected

Variety	N	No Fo	licur		Folicur	(1.0 l/h	na)	Conv	CM	Grand
	rate kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
	_									
Winner	0	12.4		12.4	12.8		12.8	12.6		12.6
Winner	60	14.1	14.0	14.1	13.8	14.2	14.0	13.9	14.1	14.0
Winner	180	15.1	12.9	14.0	15.0	13.2	14.1	15.0	13.1	14.1
Winner	300	16.0	12.1	14.0	15.2	11.2	13.2	15.6	11.7	13.6
Winner	Mean	14.4	12.8	13.6	14.2	12.8	13.5	14.3	12.8	13.6
Castille	0	11.2		11.2	11.0		11.0	11.1		11.1
Castille	60	15.3	13.3	14.3	15.3	13.3	14.3	15.3	13.3	14.3
Castille	180	14.9	12.0	13.5	14.8	10.6	12.7	14.9	11.3	13.1
Castille	300	14.4	13.0	13.7	13.9	13.2	13.6	14.1	13.1	13.6
Castille	Mean	14.0	12.4	13.2	13.8	12.0	12.9	13.9	12.2	13.0
Win+Cas	0	11.8		11.8	11.9		11.9	11.9		11.9
Win+Cas	60	14.7	13.7	14.2	14.5	13.7	14.1	14.6	13.7	14.2
Win+Cas	180	15.0	12.5	13.7	14.9	11.9	13.4	14.9	12.2	13.6
Win+Cas	300	15.2	12.6	13.9	14.6	12.2	13.4	14.9	12.4	13.6
Win+Cas	Mean	14.2	12.6	13.4	14.0	12.4	13.2	14.1	12.5	13.3
Treatment			df	SED	P-Valu	e				
Folicur			3	0.12	0.218					
Variety			90	0.31	0.095					
N managem	ent		90	0.31	<.001					
Nrate			90	0.439	<.001					
Fol x Var			71.38	0.333	0.75					
Fol x Man			71.38	0.333	0.989					
Var x Man			90	0.439	0.771					
Fol x Nrate			92.34	0.551	0.913					
Var x Nrate			90	0.621	0.176					
Man x Nrate)		90	0.621	0.007					
Fol x Var x l	Man		92.34	0.551	0.774					
Fol x Var x l	Nrate		92.61	0.83	0.819					
Fol x Man x	Nrate		92.61	0.83	0.97					
Var x Man x	Nrate		90	0.878	0.022					
Fol x Var x l	Man x Nr	ate	91.52	1.208	0.916					

Table 5.138. Rosemaund. Percentage of light intercepted at base of flowers

Variety	N	No Fol	icur		Folicur	(0.5 1/h	na)	Conv	CM	Grand
	rate kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
NA (Construction)	0	24.2		27.2	24.7		27.7	27.5		27.5
Winner	0	36.3	24/	36.3	36.7	4.1	36.7	36.5	27.0	36.5
Winner	60	58.6	34.6	46.6	60.6	41	50.8	59.6	37.8	48.7
Winner	180	81.8	62.4	72.1	70.9	66.3	68.6	76.4	64.3	70.4
Winner	300	66.4	67.4	66.9	61.1	63.7	62.4	63.8	65.6	64.7
Winner	Mean	60.8	50.2	55.5	57.3	51.9	54.6	59.1	51.1	55.1
Castille	0	42.2		42.2	40.1		40.1	41.1		41.1
Castille	60	66.4	50.1	58.2	56.5	55.5	56	61.5	52.8	57.1
Castille	180	74.5	63.4	68.9	77.3	67.2	72.2	75.9	65.3	70.6
Castille	300	74.2	50.1	62.1	75.1	53.6	64.3	74.6	51.8	63.2
Castille	Mean	64.3	51.4	57.9	62.2	54.1	58.2	63.3	52.8	58
Win+Cas	0	39.3		39.3	38.4		38.4	38.8		38.8
Win+Cas	60	62.5	42.3	52.4	58.6	48.3	53.4	60.5	45.3	52.9
Win+Cas	180	78.1	62.9	70.5	74.1	66.8	70.4	76.1	64.8	70.5
Win+Cas	300	70.3	58.8	64.5	68.1	58.6	63.4	69.2	58.7	64
Win+Cas	Mean	62.5	50.8	56.7	59.8	53	56.4	61.2	51.9	56.5
Treatment		•	df	SED	P-Valu	e		•		•
Foliour			_							
Folicur			3	1.3	0.848					
Variety			90	2.97	0.321					
N managem	nent		90	2.97	0.002					
Nrate			90	4.2	<.001					
Fol x Var			60.88	3.24	0.845					
Fol x Man			60.88	3.24	0.404					
Var x Man			90 90.77	4.2 5.3	0.673					
Fol x Nrate			90.77	5.93	0.994					
Var x Nrate Man x Nrate			90	5.93	0.639 0.314					
Fol x Var x l			90.77	5.3	0.967					
Fol x Var x l			92.9	7.96	0.815					
Fol x Man x			92.9	7.96	0.926					
Var x Man x			90	8.39	0.155					
Fol x Var x l	Man x Nr	ate	91.86	11.56	0.909					

Table 5.139. Rosemaund. Percentage of light intercepted at ground level

Variety	N	No Foli	cur		Folicur	(1.0 l/h	a)	Conv	CM	Grand
	rate kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	E7 1 /		E7 1 <i>1</i>	56.6		56.6	56.87		56.87
Winner Winner	0 60	57.14 78.4	73.46	57.14 75.93	77.91	73.65	75.78	78.15	73.56	75.85
Winner	180	90.12	90.98	90.55	92.44	90.69	91.56	91.28	90.83	91.06
		90.12			92.44	89.62	91.36	91.20		
Winner Winner	300 Mean	79.19	91.99 78.39	91.55 78.79	79.95	77.64	78.8	79.57	90.81 78.02	91.4 78.79
Castille	0	59.61		59.61	56.39		56.39	58		58
Castille	60	77.41	76.02	76.72	75.06	74.41	74.74	76.24	75.22	75.73
Castille	180	88.46	89.1	88.78	87.28	87.68	87.48	87.87	88.39	88.13
Castille	300	92.15	90.73	91.44	91.64	88.95	90.29	91.89	89.84	90.87
Castille	Mean	79.41	78.87	79.14	77.59	76.86	77.23	78.5	77.86	78.18
Win+Cas	0	58.38		58.38	56.49		56.49	57.44		57.44
Win+Cas	60	77.91	74.74	76.32	76.48	74.03	75.26	77.2	74.39	75.79
Win+Cas	180	89.29	90.04	89.66	89.86	89.19	89.52	89.57	89.61	89.59
Win+Cas	300	91.63	91.36	91.49	92.25	89.29	90.77	91.94	90.32	91.13
Win+Cas	Mean	79.3	78.63	78.96	78.77	77.25	78.01	79.04	77.94	78.49
Treatment			df	SED	P-Valu	e				
Folicur			3	1.028	0.422					
Variety			314	1.396	0.661					
N managem	nent		314	1.396	0.433					
Nrate	.0110		314	1.974	<.001					
Fol x Var			23.48	1.733	0.493					
Fol x Man			23.48	1.733	0.76					
Var x Man			314	1.974	0.742					
Fol x Nrate			98.96	2.627	0.977					
Var x Nrate			314	2.791	0.775					
Man x Nrate			314	2.791	0.866					
Fol x Var x l			98.96	2.627	0.813					
Fol x Var x			223.8	3.833	0.996					
Fol x Man x			223.8	3.833	0.974					
Var x Man x			314	3.947	0.949					
Fol x Var x l	Man x Nr	ate	296.51	5.502	0.997					

5.3.9 Crop height

At Boxworth, Winner was 12 cm taller than Castille (P<0.001) and increasing N rate from nil to 360 kg N/ha increased crop height by 10 cm (Table 5.140). Canopy Management appeared to reduce the height of Castille at high N rates, but had little effect on other treatments. Folicur did not significantly affect height.

At High Mowthorpe, Winner was 2 cm taller than Castille (P<0.1) and increasing N rate from nil to 360 kg N/ha increased the height of Winner by 15 cm and Castille by 28 cm (Table 5.141). Canopy Management did not affect height. Folicur reduced height by 7 cm.

At Rosemaund, Winner was 17 cm taller than Castille (P<0.001) and increasing N rate from nil to 360 kg N/ha increased crop height by 3 cm (Table 5.142). Canopy Management reduced height by 4 cm at 60 kg N/ha and by 9 cm at 300 kg N/ha. Folicur did not significantly affect height.

Table 5.140. Boxworth. Height (cm) to the top of terminal receme

Variety	N rate	No Foli	cur		Folicur	(0.5 l/h	a)	Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	130.9		130.9	127.0		127.0	128.9		128.9
Winner	60	126.1	131.6	128.9	126.3	135.2	130.8	126.2	133.4	129.8
Winner	180	133.1	130.5	131.8	138.7	134.3	136.5	135.9	132.4	134.1
Winner	300	134.1	140.4	137.3	138.0	138.2	138.1	136.1	139.3	137.7
Winner	Mean	131.0	133.4	132.2	132.5	133.7	133.1	131.8	133.5	132.7
Castille	0	111.5		111.5	115.2		115.2	113.3		113.3
Castille	60	117.3	119.1	118.2	120.3	120.0	120.1	118.8	119.5	119.2
Castille	180	125.6	126.7	126.1	127.2	125.1	126.1	126.4	125.9	126.1
Castille	300	130.1	121.2	125.6	130.1	120.3	125.2	130.1	120.8	125.4
Castille	Mean	121.1	119.6	120.4	123.2	120.2	121.7	122.2	119.9	121.0
Win+Cas	0	121.2		121.2	121.1		121.1	121.1		121.1
Win+Cas	60	121.7	125.3	123.5	123.3	127.6	125.4	122.5	126.5	124.5
Win+Cas	180	129.3	128.6	128.9	132.9	129.7	131.3	131.1	129.2	130.1
Win+Cas	300	132.1	130.8	131.5	134.1	129.3	131.7	133.1	130.0	131.6
Win+Cas	Mean	126.1	126.5	126.3	127.8	126.9	127.4	127.0	126.7	126.8
Treatment			df	SED	P-Value	е				
Folicur			2	2.14	0.658					
Variety			60	1.10	<.001					
N managen	nent		60	1.10	0.814					
Nrate			60	1.56	<.001					
Fol x Var			3.2	2.41	0.848					
Fol x Man			3.2	2.41	0.55					
Var x Man			60	1.56	0.073					
Fol x Nrate			6.34	2.87	0.816					
Var x Nrate			60	2.21	0.113					
Man x Nrate	е		60	2.21	0.131					
Fol x Var x	Man		6.34	2.87	0.933					
Fol x Var x	Nrate		14.7	3.62	0.261					
Fol x Man x	Nrate		14.7	3.62	0.898					
Var x Man	k Nrate		60	3.12	0.07					
Fol x Var x	Man x Nr	ate	32.56	4.78	0.862					

Table 5.141. High Mowthorpe. Height (cm) to the top of terminal raceme

Variety	N rate	No Foli	cur		Folicur	(0.5 l/h	a)	Conv	СМ	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	114.7		114.7	104.1		104.1	109.4		109.4
Winner	60	123.0	121.1	122.0	118.8	117.8	118.3	120.9	119.4	120.2
Winner	180	127.8	125.8	126.8	117.6	117.3	117.4	122.7	121.5	122.1
Winner	300	127.3	128.7	128.0	120.7	119.6	120.1	124.0	124.1	124.1
Winner	Mean	123.2	122.5	122.9	115.3	114.7	115.0	119.3	118.6	118.9
Castille	0	99.5		99.5	97.7		97.7	98.6		98.6
Castille	60	117.8	123.8	120.8	115.1	121.2	118.1	116.4	122.5	119.5
Castille	180	127.3	127.7	127.5	122.9	119.9	121.4	125.1	123.8	124.5
Castille	300	130.8	131.4	131.1	120.6	121.8	121.2	125.7	126.6	126.2
Castille	Mean	118.9	120.6	119.8	114.1	115.1	114.6	116.5	117.9	117.2
Win+Cas	0	107.1		107.1	100.9		100.9	104.0		104.0
Win+Cas	60	120.4	122.4	121.4	116.9	119.5	118.2	118.7	121.0	119.8
Win+Cas	180	127.6	126.7	127.2	120.2	118.6	119.4	123.9	122.6	123.3
Win+Cas	300	129.1	130.1	129.6	120.6	120.7	120.7	124.9	125.4	125.1
Win+Cas	Mean	121.1	121.6	121.3		114.9	114.8		118.2	118.1
Treatment			df	SED	P-Value	е				
Folicur			3	2.30	0.066					
Variety			90	1.04	0.095					
N managem	ent		90	1.04	0.714					
Nrate			90	1.47	<.001					
Fol x Var			4.35	2.53	0.19					
Fol x Man			4.35	2.53	0.887					
Var x Man			90	1.47	0.331					
Fol x Nrate			7.72	2.93	0.246					
Var x Nrate			90	2.08	<.001					
Man x Nrate	:		90	2.08	0.682					
Fol x Var x I	Man		7.72	2.93	0.855					
Fol x Var x I	Vrate		16.63	3.59	0.313					
Fol x Man x			16.63	3.59	0.994					
Var x Man x			90	2.95	0.508					
Fol x Var x N	Man x Nr	ate	37.85	4.65	0.923					

Table 5.142. Rosemaund. Height to the top of terminal raceme

Variety	N rate	No Foli	cur		Folicur	(1.0 l/h	a)	Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	137.0		137.0	140.2		140.2	138.6		138.6
Winner	60	143.3	138.4	140.9	141.9	139.7	140.8	142.6	139.0	140.8
Winner	180	144.9	133.6	139.3	144.8	143.1	144.0	144.9	138.3	141.6
Winner	300	141.8	139.9	140.8	151.2	136.4	143.8	146.5	138.2	142.3
Winner	Mean	141.8	137.2	139.5	144.5	139.8	142.2	143.1	138.5	140.8
Castille	0	117.3		117.3	125.1		125.1	121.2		121.2
Castille	60	126.9	122.4	124.7	126.1	122.8	124.4	126.5	122.6	124.5
Castille	180	132.1	123.7	127.9	127.9	121.2	124.5	130.0	122.4	126.2
Castille	300	131.0	121.3	126.1	126.8	115.8	121.3	128.9	118.5	123.7
Castille	Mean	126.8	121.2	124.0	126.5	121.2	123.8	126.6	121.2	123.9
Win+Cas	0	127.1		127.1	132.6		132.6	129.9		129.9
Win+Cas	60	135.1	130.4	132.8	134.0	131.2	132.6	134.6	130.8	132.7
Win+Cas	180	138.5	128.6	133.6	136.4	132.1	134.3	137.4	130.4	133.9
Win+Cas	300	136.4	130.6	133.5	139.0	126.1	132.5	137.7	128.3	133.0
Win+Cas	Mean	134.3	129.2	131.7	135.5	130.5	133.0	134.9	129.9	132.4
					P-					
Treatment			df	SED	Value					
Folicur			3	1.40	0.434					
Variety			90	1.13	<.001					
N managem	ent		90	1.13	<.001					
Nrate			90	1.60	0.075					
Fol x Var			8.01	1.80	0.211					
Fol x Man			8.01	1.80	0.96					
Var x Man			90	1.60	0.702					
Fol x Nrate			22.98	2.41	0.182					
Var x Nrate			90	2.26	0.764					
Man x Nrate			90	2.26	0.025					
Fol x Var x N	Man		22.98	2.41	0.901					
Fol x Var x N	Vrate		54.34	3.30	0.137					
Fol x Man x	Nrate		54.34	3.30	0.248					
Var x Man x	Nrate		90	3.19	0.989					
Fol x Var x N	Man x Nra	te	82.98	4.59	0.487					

5.3.10 Lodging

At Boxworth there was very little lodging with only the highest N rates experiencing slight leaning (Table 5.143). At High Mowthorpe, Winner experienced more stem leaning (43%) compared with 29% for Castille at flowering (Table 5.145). Increasing N rate from 0 to 360 kg N/ha increased the area of plot that was leaning from 25% to 48% (Table 5.145). Folicur reduced the area lodged of Winner grown at Conventional N timings from 48% to 36% (Table 5.145). At harvest, Winner and higher N rates had significantly more lodging (Table 5.146). At Rosemaund Winner experienced significantly less lodging at flowering (Table 5.147 and 5.148). Folicur reduced the area of crop that was leaning between 10 and 45 degrees from 43 to 27% (Table 5.146). At harvest, the amount of severe lodging (46 to 90 degrees) was significantly reduced by Castille, reduced N rate and Folicur (Table 5.150). Without Folicur the Canopy Managed N timings reduced the amount of severe lodging from 32% to 19% (Table 5.150).

Table 5.143. Boxworth. Percent of plot lodged at 10-45 degrees at harvest

MariotM	V	No Fol	icur		Folicur	(0.5 1/	ha)	Conv	CM	Grand
- 1	rate kg/ha	Conv	CM	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Winner 6	0 60 120	0 0 0	0 0	0 0 0	0 0 0	0 0	0 0 0	0 0 0	0 0	0 0 0
Winner 3 Winner 3 Winner 3	180 240 300 360 Mean	0 0 3.33 0 0.48	0 0 0 0	0 0 1.67 0 0.24	0 0 0 5.00 0.71	3.33 5.00 0 1.67 1.43	1.67 2.50 0 3.33 1.07	0 0 1.67 2.50 0.60	1.67 2.50 0 0.83 0.71	0.83 1.25 0.83 1.67 0.65
Castille Castille Castille Castille Castille Castille Castille Castille	0 60 120 180 240 300 360 Mean	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 3.33 0 0 6.67 1.43	0 0 0 0 0 0 3.33 0.48	0 0 0 1.67 0 0 5.00 0.95	0 0 0 1.67 0 0 3.33 0.71	0 0 0 0 0 0 1.67 0.24	0 0 0 0.83 0 0 2.50 0.48
Win+Cas Win+Cas Win+Cas Win+Cas Win+Cas Win+Cas Win+Cas	0 60 120 180 240 300 360 Mean	0 0 0 0 0 1.67 0	0 0 0 0 0 0	0 0 0 0 0 0.83 0	0 0 0 1.67 0 0 5.83 1.07	0 0 1.67 2.50 0 2.50 0.95	0 0 0 1.67 1.25 0 4.17 1.01	0 0 0 0.83 0 0.83 2.92 0.65	0 0 0.83 1.25 0 1.25 0.48	0 0 0 0.83 0.63 0.42 2.08 0.57
Treatment Folicur Variety N rate N Managem Fol x Var Fol x Nrate Var x Nrate Fol x Man Var x Man Nrate x man Fol x Var x Fol x Var x Fol x Var x Fol x Nrate	n man x Man		df 2 108 108 108 7.67 57.46 108 7.67 108 108 94.1 26.61 94.1	SED 0.372 0.367 0.687 0.522 0.973 0.971 0.522 0.519 0.971 1.375 0.737 1.375 1.374	P-Value 0.138 0.628 0.034 0.628 0.871 0.01 0.821 0.871 0.419 0.534 0.794 0.147 0.509 0.587 0.781	e				

Table 5.144. High Mowthorpe lower stem leaning (degrees) at end of flowering

Variety	N	No Fo	licur		Folicur	(1.0 l/h	na)	Conv	CM	Grand
	rate kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Winner Winner Winner Winner Winner Winner Winner Winner	0 60 120 180 240 300 360 Mean	22.5 11.3 15.0 11.3 15.0 11.3 11.3 13.9	15.0 15.0 15.0 11.3 11.3 11.3	22.5 13.1 15.0 13.1 13.1 11.3 11.3 14.2	18.8 15.0 7.5 3.8 7.5 15.0 15.0	15.0 11.3 7.5 3.8 11.3 0.0 9.6	18.8 15.0 9.4 5.6 5.6 13.1 7.5	20.6 13.1 11.3 7.5 11.3 13.1 13.1	15.0 13.1 11.3 7.5 11.3 5.6 12.1	20.6 14.1 12.2 9.4 9.4 12.2 9.4 12.5
Castille Castille Castille Castille Castille Castille Castille Castille	0 60 120 180 240 300 360 Mean	18.8 11.3 18.8 11.3 18.8 11.3 3.8 13.4	15.0 11.3 11.3 11.3 11.3 15.0 13.4	18.8 13.1 15.0 11.3 15.0 11.3 9.4 13.4	15.0 11.3 3.8 11.3 3.8 3.8 3.8 7.5	7.5 11.3 7.5 11.3 11.3 7.5 10.2	15.0 9.4 7.5 9.4 7.5 7.5 5.6 8.8	16.9 11.3 11.3 11.3 11.3 7.5 3.8 10.4	11.3 11.3 9.4 11.3 11.3 11.3	16.9 11.3 11.3 10.3 11.3 9.4 7.5 11.1
Win+Cas Win+Cas Win+Cas Win+Cas Win+Cas Win+Cas Win+Cas	0 60 120 180 240 300 360 Mean	20.6 11.3 16.9 11.3 16.9 11.3 7.5 13.7	15.0 13.1 13.1 11.3 11.3 13.1 13.9	20.6 13.1 15.0 12.2 14.1 11.3 10.3 13.8	16.9 13.1 5.6 7.5 5.6 9.4 9.4 9.6	11.3 11.3 7.5 7.5 11.3 3.8 9.9	16.9 12.2 8.4 7.5 6.6 10.3 6.6 9.8	18.8 12.2 11.3 9.4 11.3 10.3 8.4 11.7	13.1 12.2 10.3 9.4 11.3 8.4 11.9	18.8 12.7 11.7 9.8 10.3 10.8 8.4 11.8
Folicur Variety N rate N Managem Fol x Var Fol x Nrate Var x Nrate Fol x Man Var x Man Nrate x man Fol x Var x	n Nrate man		df 3 162 162 162 3.97 10.75 162 3.97 162 162 24.62 6.31 24.62	2.32 0.902 1.687 0.902 2.489 3.204 2.386 2.489 1.276 2.386 3.995 2.797 3.995	P-Value 0.182 0.14 <.001 0.767 0.553 0.355 0.599 1 0.237 0.979 0.681 0.14 0.04	e				
Var x Nrate Fol x Var x	x man	⁄lan	24.62 162 59.21	3.995 3.375 5.23	0.04 0.065 0.681					

Table 5.145. High Mowthorpe pod layer leaning (degrees) at end of flowering

Variety	N	No Fo	licur		Folicur	(1.0 /	na)	Conv	CM	Grand
	rate kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Winner Winner Winner Winner Winner Winner Winner Winner	0 60 120 180 240 300 360 Mean	30.0 30.0 52.5 52.5 60.0 60.0 52.5 48.2	30.0 45.0 37.5 60.0 52.5 60.0 45.0	30.0 30.0 48.8 45.0 60.0 56.3 56.3	30.0 26.3 37.5 37.5 37.5 37.5 45.0 35.9	30.0 33.8 45.0 45.0 60.0 60.0	30.0 28.1 35.6 41.3 41.3 48.8 52.5 39.6	30.0 28.1 45.0 45.0 48.8 48.8 48.8	30.0 39.4 41.3 52.5 56.3 60.0 44.2	30.0 29.1 42.2 43.1 50.6 52.5 54.4 43.1
Castille Castille Castille Castille Castille Castille Castille Castille Castille	0 60 120 180 240 300 360 Mean	22.5 18.8 22.5 26.3 45.0 37.5 45.0 31.1	26.3 26.3 30.0 45.0 30.0 45.0 32.1	22.5 22.5 24.4 28.1 45.0 33.8 45.0 31.6	18.8 18.8 26.3 33.8 26.3 37.5 37.5 28.4	18.8 22.5 22.5 30.0 30.0 37.5 25.7	18.8 18.8 24.4 28.1 28.1 33.8 37.5 27.1	20.6 18.8 24.4 30.0 35.6 37.5 41.3 29.7	22.5 24.4 26.3 37.5 30.0 41.3 28.9	20.6 20.6 24.4 28.1 36.6 33.8 41.3 29.3
Win+Cas Win+Cas Win+Cas Win+Cas Win+Cas Win+Cas Win+Cas	0 60 120 180 240 300 360 Mean	26.3 24.4 37.5 39.4 52.5 48.8 48.8 39.6	28.1 35.6 33.8 52.5 41.3 52.5 38.6	26.3 26.3 36.6 36.6 52.5 45.0 50.6 39.1	24.4 22.5 31.9 35.6 31.9 37.5 41.3 32.1	24.4 28.1 33.8 37.5 45.0 48.8 34.6	24.4 23.4 30.0 34.7 34.7 41.3 45.0 33.3	25.3 23.4 34.7 37.5 42.2 43.1 45.0 35.9	26.3 31.9 33.8 45.0 43.1 50.6 36.6	25.3 24.8 33.3 35.6 43.6 43.1 47.8 36.2
Treatment			df	SED	P-Value	е				
Folicur Variety N rate N Managem Fol x Var Fol x Nrate Var x Nrate Fol x Man Var x Man Nrate x mar Fol x Var x I Fol x Var x I Fol x Nrate Var x Nrate Fol x Var x I	n Vrate man x Man x man	J an	3 162 162 3.46 6.26 162 3.46 162 11.42 4.49 11.42 162 25.29	5.089 1.388 2.597 1.388 5.275 6.121 3.673 5.275 1.963 3.673 7.138 5.628 7.138 5.195 8.828	0.34 <.001 <.001 0.63 0.387 0.035 0.351 0.212 0.29 0.557 0.625 0.01 0.699 0.416 0.497					

Table 5.146. High Mowthorpe lodging score (1 = whole plot flat; 9 = whole plot upright) at harvest.

Variety N No Folicur kg/ha Folicur CM Folicur (1.0 l/ha) Conv CM Grave CM Grave CM Mean Mean	50
Winner 60 8.50 8.75 8.63 9.00 8.75 8.88 8.75 8.75 8.75	
Winner 60 8.50 8.75 8.63 9.00 8.75 8.88 8.75 8.75 8.75	
Winner 120 8.00 8.50 8.25 8.50 8.75 8.63 8.25 8.63 8.4	
Winner 180 8.50 8.50 8.50 8.25 8.50 8.38 8.50 8.4	
Winner 240 7.75 7.50 7.63 8.25 8.25 8.25 8.00 7.88 7.9	
Winner 300 7.25 7.25 8.25 7.50 7.88 7.75 7.38 7.5	
Winner 360 7.25 7.25 7.25 7.75 7.00 7.38 7.50 7.13 7.3	
Winner Mean 7.93 8.00 7.96 8.39 8.21 8.30 8.16 8.11 8.1	13
Castille 0 8.75 8.75 9.00 9.00 8.88 8.8	38
Castille 60 8.75 9.00 8.88 9.00 9.00 9.00 8.88 9.00 8.9	94
Castille 120 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.	00
Castille 180 9.00 8.50 8.75 8.50 8.50 8.50 8.75 8.50 8.6	53
Castille 240 7.75 8.50 8.13 8.75 8.75 8.75 8.25 8.63 8.4	14
Castille 300 7.75 7.75 7.75 8.25 8.50 8.38 8.00 8.13 8.0	06
Castille 360 8.50 8.00 8.25 8.50 8.25 8.38 8.50 8.13 8.3	31
Castille Mean 8.50 8.50 8.50 8.71 8.71 8.71 8.61 8.61 8.6	51
Win+Cas 0 8.50 8.50 8.88 8.88 8.69 8.6	59
Win+Cas 60 8.63 8.88 8.75 9.00 8.88 8.94 8.81 8.88 8.8	
Win+Cas 120 8.50 8.75 8.63 8.75 8.88 8.81 8.63 8.81 8.75	
Win+Cas 180 8.75 8.50 8.63 8.38 8.50 8.44 8.56 8.50 8.5	
Win+Cas 240 7.75 8.00 7.88 8.50 8.50 8.50 8.13 8.25 8.1	
Win+Cas 300 7.50 7.50 7.50 8.25 8.00 8.13 7.88 7.75 7.8	
Win+Cas 360 7.88 7.63 7.75 8.13 7.63 7.88 8.00 7.63 7.8	
Win+Cas Mean 8.21 8.25 8.23 8.55 8.46 8.51 8.38 8.36 8.3	
Treatment df SED P-Value	
Folicur 3 0.183 0.227	
Variety 162 0.088 <.001	
N rate 162 0.165 < .001	
N Management 162 0.088 0.762	
Fol x Var 4.56 0.203 0.48	
Fol x Nrate 16.66 0.283 0.166	
Var x Nrate 162 0.234 0.216	
Fol x Man 4.56 0.203 0.48	
Var x Man 162 0.125 0.762	
Nrate x man 162 0.234 0.698	
Fol x Var x 41.66 0.367 0.997	
Fol x Var x man 8.59 0.238 0.48	
Fol x Nrate x Man 41.66 0.367 0.943	
Var x Nrate x man 162 0.33 0.736	
Fol x Var x Nrate x Man 92.08 0.494 0.789	

Table 5.147. Rosemaund – percent of plot lodged at 10-45 degrees at end of flowering

Variety	N	No Fo	licur		Folicur	(1.0 /	na)	Conv	CM	Grand
	rate kg/ha	Conv	СМ	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner Winner Winner Winner Winner Winner Winner Winner	0 60 120 180 240 300 360 Mean	50.0 49.5 49.3 63.8 54.0 53.8 50.0 52.9	50.8 51.3 51.3 48.8 51.8 52.0 50.8	50.0 50.1 50.3 57.5 51.4 52.8 51.0 51.9	51.3 58.8 52.5 64.5 58.8 63.8 24.3 53.4	53.3 24.3 52.5 26.8 55.5 50.0 44.8	51.3 56.0 38.4 58.5 42.8 59.6 37.1 49.1	50.6 54.1 50.9 64.1 56.4 58.8 37.1 53.1	52.0 37.8 51.9 37.8 53.6 51.0 47.8	50.6 53.1 44.3 58.0 47.1 56.2 44.1 50.5
Castille Castille Castille Castille Castille Castille Castille Castille Castille	0 60 120 180 240 300 360 Mean	1.3 41.3 35.0 33.8 36.3 52.5 48.8 35.5	45.5 20.0 40.0 40.0 47.5 45.0 34.2	1.3 43.4 27.5 36.9 38.1 50.0 46.9 34.9	0 0 25.8 1.3 0 1.3 2.5 4.4	0 0 3.8 3.8 24.5 7.5 5.6	0 0 12.9 2.5 1.9 12.9 5.0	0.6 20.6 30.4 17.5 18.1 26.9 25.6 20.0	22.8 10.0 21.9 21.9 36.0 26.3 19.9	0.6 21.7 20.2 19.7 20.0 31.4 25.9 19.9
Win+Cas Win+Cas Win+Cas Win+Cas Win+Cas Win+Cas Win+Cas	0 60 120 180 240 300 360 Mean	25.6 45.4 42.1 48.8 45.1 53.1 49.4 44.2	48.1 35.6 45.6 44.4 49.6 48.5 42.5	25.6 46.8 38.9 47.2 44.8 51.4 48.9 43.4	25.6 29.4 39.1 32.9 29.4 32.5 13.4 28.9	26.6 12.1 28.1 15.3 40.0 28.8 25.2	25.6 28.0 25.6 30.5 22.3 36.3 21.1 27.1	25.6 37.4 40.6 40.8 37.3 42.8 31.4 36.6	37.4 23.9 36.9 29.8 44.8 38.6 33.9	25.6 37.4 32.3 38.8 33.5 43.8 35.0 35.2
Treatment			df	SED	P-Value	е				
Folicur Variety N rate N Managem Fol x Var Fol x Nrate Var x Nrate Fol x Man Var x Man Nrate x mar Fol x Var x N Fol x Var x T Fol x Nrate x Var x Nrate	n Vrate man x Man x man		3 162 162 28.33 143.3 162 28.33 162 162.8 96.23 162.8 162.8	3.25 4.83 9.04 4.83 5.82 12.27 12.78 5.82 6.83 12.78 17.72 8.98 17.72 18.07 25.31	0.015 <.001 0.573 0.577 0.006 0.835 0.654 0.839 0.585 0.901 0.792 0.637 0.958 0.953					

Table 5.148. Rosemaund – percent of plot lodged at 45-90 degrees at end of flowering

Variety	N	No Fo	licur		Folicur	(1.0 /	na)	Conv	CM	Grand
	rate kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Winner Winner Winner Winner Winner Winner Winner Winner	0 60 120 180 240 300 360 Mean	45.0 47.5 49.5 36.3 45.0 45.0 48.8 45.3	47.0 48.3 46.3 48.5 47.0 47.5 47.1	45.0 47.3 48.9 41.3 46.8 46.0 48.1 46.2	42.5 35.0 42.5 26.3 25.0 27.5 47.8 35.2	41.3 24.0 41.3 44.0 41.5 45.0 39.9	42.5 38.1 33.3 33.8 34.5 34.5 46.4 37.6	43.8 41.3 46.0 31.3 35.0 36.3 48.3 40.3	44.1 36.1 43.8 46.3 44.3 46.3 43.5	43.8 42.7 41.1 37.5 40.6 40.3 47.3 41.9
Castille Castille Castille Castille Castille Castille Castille Castille Castille	0 60 120 180 240 300 360 Mean	0 0 5.0 12.5 12.5 10.0 18.8 8.4	0 3.8 7.5 2.5 2.5 7.5 3.4	0 0 4.4 10.0 7.5 6.3 13.1 5.9	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0	0 0 2.5 6.3 6.3 5.0 9.4 4.2	0 1.9 3.8 1.3 1.3 3.8 1.7	0 0 2.2 5.0 3.8 3.1 6.6 2.9
Win+Cas Win+Cas Win+Cas Win+Cas Win+Cas Win+Cas Win+Cas	0 60 120 180 240 300 360 Mean	22.5 23.8 27.3 24.4 28.8 27.5 33.8 26.8	23.5 26.0 26.9 25.5 24.8 27.5 25.2	22.5 23.6 26.6 25.6 27.1 26.1 30.6 26.0	21.3 17.5 21.3 13.1 12.5 13.8 23.9 17.6	20.6 12.0 20.6 22.0 20.8 22.5 20.0	21.3 19.1 16.6 16.9 17.3 17.3 23.2 18.8	21.9 20.6 24.3 18.8 20.6 20.6 28.8 22.2	22.1 19.0 23.8 23.8 22.8 25.0 22.6	21.9 21.3 21.6 21.3 22.2 21.7 26.9 22.4
Treatment			df	SED	P-Value	e				
Folicur Variety N rate N Managem Fol x Var Fol x Nrate Var x Nrate Fol x Man Var x Man Nrate x mar Fol x Var x I Fol x Var x I Fol x Nrate	n Nrate man x Man		3 162 162 162 8.19 57.07 162 8.19 162 162 116.4 24.78 116.4 162 154.4	4.19 3.4 6.36 3.4 5.39 9.32 8.99 5.39 4.81 8.99 12.95 7.22 12.95 12.71 18.14	0.182 <.001 0.977 0.912 0.69 0.981 0.56 0.399 0.984 0.982 0.879 0.991					

Table 5.149. Rosemaund – percent of plot lodged at 10-45 degrees at harvest

Variety	N rate	No Fo	No Folicur			(1.0 1/1	na)	Conv	CM	Grand
	kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Winner	0	8.8		8.8	5.0		5.0	6.9		6.9
Winner	60	26.3	17.5	21.9	0.0	6.3	3.1	13.1	11.9	12.5
Winner	120	10.0	32.5	21.3	17.5	10.0	13.8	13.8	21.3	17.5
Winner	180	11.3	42.5	26.9	45.0	23.8	34.4	28.1	33.1	30.6
Winner	240	15.0	32.5	23.8	23.8	10.0	16.9	19.4	21.3	20.3
Winner	300	12.5	13.8	13.1	38.8	25.0	31.9	25.6	19.4	22.5
Winner	360	25.0	7.5	16.3	42.5	50.0	46.3	33.8	28.8	31.3
Winner	Mean	15.5	22.1	18.8	24.6	18.6	21.6	20.1	20.4	20.2
Castille	0	0.0		0.0	0.0		0.0	0.0		0.0
Castille	60	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Castille	120	20.0	12.5	16.3	0.0	0.0	0.0	10.0	6.3	8.1
Castille	180	3.8	12.5	8.1	6.3	0.0	3.1	5.0	6.3	5.6
Castille	240	5.0	10.0	7.5	0.0	0.0	0.0	2.5	5.0	3.8
Castille	300	16.3	15.0	15.6	0.0	0.0	0.0	8.1	7.5	7.8
Castille	360	7.5	15.0	11.3	0.0	0.0	0.0	3.8	7.5	5.6
Castille	Mean	7.5	9.3	8.4	0.9	0.0	0.4	4.2	4.6	4.4
Win+Cas	0	4.4		4.4	2.5		2.5	3.4		3.4
Win+Cas	60	13.1	8.8	10.9	0.0	3.1	1.6	6.6	5.9	6.3
Win+Cas	120	15.0	22.5	18.8	8.8	5.0	6.9	11.9	13.8	12.8
Win+Cas	180	7.5	27.5	17.5	25.6	11.9	18.8	16.6	19.7	18.1
Win+Cas	240	10.0	21.3	15.6	11.9	5.0	8.4	10.9	13.1	12.0
Win+Cas	300	14.4	14.4	14.4	19.4	12.5	15.9	16.9	13.4	15.2
Win+Cas	360	16.3	11.3	13.8	21.3	25.0	23.1	18.8	18.1	18.4
Win+Cas	Mean	11.5	15.7	13.6	12.8	9.3	11.0	12.1	12.5	12.3
Treatment			df	SED	P-Value	9				
Folicur			3	2.844	0.43					
Variety			162	1.653	<.001					
N rate			162	3.092	<.001					
N Manageme	ent		162	1.653	0.829					
Fol x Var			5.36	3.289	0.001					
Fol x Nrate			25.55	4.948	0.011					
Var x Nrate			162	4.373	0.014					
Fol x Man			5.36	3.289	0.021					
Var x Man			162	2.338	0.957					
Nrate x man	1		162	4.373	0.955					
Fol x Var x N	Irate		64.27	6.603	<.001					
Fol x Var x n	man		11.94	4.035	0.132					
Fol x Nrate x	k Man		64.27	6.603	0.009					
Var x Nrate			162	6.184	0.773					
Fol x Var x N	Irate x M	lan	121	9.047	0.032					

Table 5.150. Rosemaund – percent of plot lodged at 45-90 degrees at harvest.

Variety	N rate	No Fol	icur		Folicur	· (1.0 l/	ha)	Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	0		0	0		0	0		0
Winner	60	0	6.3	3.1	0	0	0	0	3.1	1.6
Winner	120	50.0	7.5	28.8	11.3	0	5.6	30.6	3.8	17.2
Winner	180	56.3	25.0	40.6	7.5	1.3	4.4	31.9	13.1	22.5
Winner	240	52.5	27.5	40.0	12.5	23.8	18.1	32.5	25.6	29.1
Winner	300	62.5	52.5	57.5	15.0	7.5	11.3	38.8	30.0	34.4
Winner	360	42.5	60.0	51.3	12.5	7.5	10.0	27.5	33.8	30.6
Winner	Mean	37.7	25.5	31.6	8.4	5.7	7.1	23.0	15.6	19.3
Castille	0	10.0		10.0	0		0	5.0		5.0
Castille	60	0	0	0	0	0	0	0	0	0
Castille	120	22.5	0	11.3	0	0	0	11.3	0	5.6
Castille	180	25.0	17.5	21.3	0	0	0	12.5	8.8	10.6
Castille	240	33.8	23.8	28.8	0	0	0	16.9	11.9	14.4
Castille	300	27.5	22.5	25.0	0	0	0	13.8	11.3	12.5
Castille	360	58.8	15.0	36.9	0	0	0	29.4	7.5	18.4
Castille	Mean	25.4	12.7	19.0	0	0	0	12.7	6.3	9.5
Win+Cas	0	5.0		5.0	0		0	2.5		2.5
Win+Cas	60	0	3.1	1.6	0	0	0	0	1.6	0.8
Win+Cas	120	36.3	3.8	20.0	5.6	0	2.8	20.9	1.9	11.4
Win+Cas	180	40.6	21.3	30.9	3.8	0.6	2.2	22.2	10.9	16.6
Win+Cas	240	43.1	25.6	34.4	6.3	11.9	9.1	24.7	18.8	21.7
Win+Cas	300	45.0	37.5	41.3	7.5	3.8	5.6	26.3	20.6	23.4
Win+Cas	360	50.6	37.5	44.1	6.3	3.8	5.0	28.4	20.6	24.5
Win+Cas	Mean	31.5	19.1	25.3	4.2	2.9	3.5	17.9	11.0	14.4
Treatment			df	SED	P-Valu	е				
Folicur			3	4.449	0.016					
Variety			162	1.99	<.001					
N rate			162	3.722	<.001					
N Manager	ment		162	1.99	<.001					
Fol x Var			4.32	4.874	0.166					
Fol x Nrate	9		14.14	6.599	<.001					
Var x Nrat	е		162	5.264	0.012					
Fol x Man			4.32	4.874	0.006					
Var x Man			162	2.814	0.788					
Nrate x ma	an		162	5.264	0.115					
Fol x Var x	Nrate		34.55	8.442	0.324					
Fol x Var x	man		7.63	5.628	0.687					
Fol x Nrate	x Man		34.55	8.442	0.308					
Var x Nrat	e x man		162	7.445	0.074					
Fol x Var x	Nrate x	Man	79.78	11.25	0.063					

5.3.11 Pod greenness at mid seed filling

At Boxworth the Canopy Managed Treatments significantly increased pod greenness at 300 kg N/ha on 19 June and 2 July (Table 5.151). At High Mowthorpe, pod greenness was increased by greater N rates, but Canopy Management had no effect (Table 5.152). At Rosemaund pod greenness was increased by greater N rates, but Canopy Management had little effect (Table 5.153).

Table 5.151. Boxworth. Pod greenness (1= brown and brittle; 5= green and flexible) at two assessment dates for Winner without Folicur.

Variety	N rate	19th Ju	une		2nd Ju	ıly	
	kg/ha	Conv	CM	Mean	Conv	CM	Mean
Winner	0	1.00		1.00	1.00		1.00
Winner	60	1.33	2.00	1.67	1.33	1.67	1.50
Winner	180	3.00	3.00	3.00	3.33	2.67	3.00
Winner	300	3.33	4.67	4.00	3.33	5.00	4.17
Winner	Mean	2.17	2.67	2.42	2.25	2.58	2.42
Treatme	ent	df	SED	P- Value	df	SED	P- Value
Nrate		14	0.1992	<.001	14	0.2559	<.001
Manage	ment	14	0.1409	0.003	14	0.1809	0.087
Nrate x	Man	14	0.2817	0.013	14	0.3619	0.003

Table 5.152. High Mowthorpe. Pod greenness (1= brown and brittle; 5= green and flexible) at three assessment dates for Winner without Folicur.

Variety	N rate	1st Jul	у		11th J	luly		23rd J	luly	
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Winner	0	2.50		2.50	2.00		2.00	2.00		2.00
Winner	60	3.00	3.25	3.12	2.00	2.00	2.00	2.50	2.50	2.50
Winner	180	3.75	4.25	4.00	3.25	3.00	3.13	3.50	3.00	3.25
Winner	300	4.25	4.75	4.50	3.75	4.00	3.88	3.75	3.75	3.75
Winner	Mean	3.38	3.69	3.53	2.75	2.75	2.75	2.94	2.81	2.88
Treatme	ent	df	SED	P- Value	df	SED	P- Value	df	SED	P- Value
Nrate		21	0.33	<.001	21	0.122	<.001	21	0.2113	<.001
Manage	ment	21	0.233	0.195	21	0.0863	1	21	0.1494	0.412
Nrate x	Man	21	0.467	0.851	21	0.1725	0.271	21	0.2988	0.563

Table 5.153. Rosemaund. Pod greenness (1= brown and brittle; 5= green and flexible) at three assessment dates for Winner without Folicur.

Variety	N rate	28th M	lay		19th Ju	une		2nd July			
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	
	•			0.00			0.00	4.05		4.05	
Winner	0	3.00		3.00	3.00		3.00	1.25		1.25	
Winner	60	4.00	4.25	4.13	3.00	4.00	3.50	3.00	2.69	2.84	
Winner	180	4.25	5.00	4.63	4.00	4.00	4.00	3.19	2.94	3.06	
Winner	300	5.00	4.75	4.88	5.00	4.00	4.50	3.50	2.94	3.22	
Winner	Mean	4.06	4.25	4.16	3.75	3.75	3.75	2.73	2.45	2.59	
Treatme	ent	df	SED	P- Value	df	SED	P- Value	df	SED	P- Value	
Nrate		21	0.1778	<.001				21	0.67	0.028	
Manage	ment	21	0.1257	0.151	Unable to calculate errors		21	0.474	0.559		
Nrate x	Man	21	0.2515	0.06				21	0.948	0.98	

5.3.12 Biomass at harvest

At Boxworth, increasing N rate from 0 to 240 kg N/ha increased the total biomass from 4.05 t/ha to 9.10 t/ha (Table 5.154). Increasing N rate also significantly increased the biomass in the seed, stems and pod walls. Canopy Managed N timings reduced biomass of the pod walls at 240 kg N/ha. Canopy Managed N timings reduced the stem biomass by 0.2 t/ha, but this effect was not statistically significant. There were no differences in overall biomass between Winner and Castille.

At High Mowthorpe, increasing N rate from 0 to 240 kg N/ha increased the total biomass from 5.55 t/ha to 14.89 t/ha (Table 5.155). Increasing N rate also significantly increased the biomass in the seed, stems and pod walls. Castille had a significantly greater biomass of the stems, seed, pod walls and overall biomass (Table 5.155).

At Rosemaund, increasing N rate from 0 to 240 kg N/ha increased the stem biomass from 2.56 t/ha to 3.86 t/ha, but had no significant effect on the biomass of the pod wall, seed and the overall biomass (Table 5.156). Castille had a significantly greater biomass of the stems and pod walls (Table 5.156). The overall biomass of Castille was 2 t/ha greater than Winner, but this effect was not significant.

Table 5.154. Boxworth. Pre-harvest measurement of dry matter (t/ha) for plots without Folicur.

Variety	N rate					ry matter	(t/ha)	Stem d	ry matter	(t/ha)		Pod wall dry matter	
	kg/ha	(t/ha) Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	(t/ha) Conv	CM	Mean
Winner	0	3.63		3.63	1.20		1.20	1.40		1.40	1.03		1.03
Winner	120	7.26	7.80	7.53	2.61	2.68	2.64	2.56	2.60	2.58	2.10	2.52	2.31
Winner	240	9.80	8.99	9.39	3.15	3.39	3.27	3.47	2.99	3.23	3.18	2.61	2.89
Winner	Mean	6.89	6.80	6.85	2.32	2.42	2.37	2.48	2.33	2.40	2.10	2.05	2.08
Castille	0	4.47		4.47	1.31		1.31	1.74		1.74	1.41		1.41
Castille	120	7.69	7.65	7.67	2.77	2.94	2.85	2.55	2.29	2.42	2.37	2.42	2.40
Castille	240	9.36	8.25	8.80	3.18	3.12	3.15	3.06	2.53	2.79	3.11	2.61	2.86
Castille	Mean	7.17	6.79	6.98	2.42	2.46	2.44	2.45	2.19	2.32	2.30	2.15	2.22
Win+Cas	0	4.05		4.05	1.26		1.26	1.57		1.57	1.22		1.22
Win+Cas Win+Cas	120	7.47	7.72	7.60	2.69	2.81	2.75	2.55	2.44	2.50	2.24	2.47	2.35
Win+Cas	240	9.58	8.62	9.10	3.16	3.25	3.21	3.27	2.76	3.01	3.15	2.61	2.88
Win+Cas	Mean	7.03	6.80	6.91	2.37	2.44	2.41	2.46	2.76	2.36	2.20	2.10	2.15
Treatment		df	SED	F	df	SED	F	df	SED	F	df	SED	F
rreatment			JLD	Prob.	a i	JLD	Prob.	a i	SLD	Prob.	GI .	JLD	Prob.
Variety		22	0.324	0.688	22	0.0979	0.491	22	0.1312	0.532	22	0.1184	0.229
N manager	ment	22	0.324	0.474	22	0.0979	0.483	22	0.1312	0.133	22	0.1184	0.401
N_rate	Home	22	0.397	<.001	22	0.1199	<.001	22	0.1606	<.001	22	0.145	<.001
Var x Man		22	0.458	0.658	22	0.1177	0.721	22	0.1855	0.661	22	0.143	0.667
Var x Nrate	<u> </u>	22	0.561	0.22	22	0.1696	0.393	22	0.1033	0.068	22	0.2051	0.349
Man x Nrat		22	0.561	0.297	22	0.1696	0.872	22	0.2272	0.276	22	0.2051	0.04
Var x Man		22	0.794	0.936	22	0.2398	0.677	22	0.3213	0.885	22	0.2901	0.713

Table 5.155. High Mowthorpe. Pre-harvest measurement of dry matter (t/ha) for plots without Folicur.

Variety	N rate	Total pl (t/ha)	lant dry r	natter	Seed d	ry matter	(t/ha)	Stem d	ry matte	r (t/ha)	Pod wa (t/ha)	II dry ma	tter
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
	<u> </u>												1
Winner	0	4.94		4.94	1.18		1.18	1.84		1.84	1.92		1.92
Winner	120	12.41	12.27	12.34	2.60	2.46	2.53	4.58	4.44	4.51	5.23	5.37	5.30
Winner	240	13.97	14.06	14.02	2.96	3.04	3.00	4.89	4.88	4.88	6.13	6.14	6.13
Winner	Mean	10.44	10.42	10.43	2.24	2.22	2.23	3.77	3.72	3.74	4.43	4.48	4.45
Castille	0	6.16		6.16	1.35		1.35	2.10		2.10	2.72		2.72
Castille	120	15.57	14.79	15.18	2.82	2.68	2.75	6.04	5.57	5.80	6.71	6.54	6.62
Castille	240	15.09	16.43	15.76	3.43	3.40	3.41	5.16	5.59	5.38	6.51	7.44	6.97
Castille	Mean	12.27	12.46	12.37	2.53	2.48	2.50	4.43	4.42	4.43	5.31	5.57	5.44
\A# 0	0				4.07		4.07	4 07		4 07	0.00		0.00
Win+Cas	0	5.55	40.50	5.55	1.26	0.55	1.26	1.97		1.97	2.32		2.32
Win+Cas	120	13.99	13.53	13.76	2.71	2.57	2.64	5.31	5.00	5.16	5.97	5.95	5.96
Win+Cas	240	14.53	15.25	14.89	3.19	3.22	3.21	5.02	5.23	5.13	6.32	6.79	6.55
Win+Cas	Mean	11.36	11.44	11.40	2.39	2.35	2.37	4.10	4.07	4.08	4.87	5.02	4.95
T		-ie	CED	F	.ie	CED	F	-1¢	CED	F	-ie	CED	F
Treatment		df	SED	Prob.	df	SED	Prob.	df	SED	Prob.	df	SED	Prob.
Variety		33	0.755	0.015	33	0.0855	0.003	33	0.295	0.027	33	0.416	0.024
N managei	ment	33	0.755	0.913	33	0.0855	0.673	33	0.295	0.915	33	0.416	0.718
N_rate	Herit	33	0.735	<.001	33	0.0033	<.001	33	0.361	<.001	33	0.51	<.001
Var x Man		33	1.068	0.892	33	0.1047	0.846	33	0.417	0.949	33	0.589	0.809
Var x Nrate	e	33	1.308	0.676	33	0.121	0.489	33	0.511	0.339	33	0.721	0.851
Man x Nrat		33	1.308	0.815	33	0.1481	0.697	33	0.511	0.773	33	0.721	0.861
Var x Man		33	1.85	0.873	33	0.2095	0.958	33	0.723	0.866	33	1.02	0.823

Table 5.156. Rosemaund. Pre-harvest measurement of dry matter (t/ha) for plots without Folicur.

Variety	N rate	Total pl (t/ha)	lant dry r	natter	Seed d	ry matter	(t/ha)	Stem d	ry matte	r (t/ha)	Pod wa (t/ha)	II dry ma	tter
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Winner	0	8.70		8.70	2.39		2.39	4.22		4.22	1.89		1.89
Winner	120	10.47	10.52	10.50	3.37	3.52	3.44	4.49	4.28	4.39	2.61	2.72	2.66
Winner	240	12.52	11.72	12.12	3.66	3.75	3.70	5.62	4.57	5.10	3.36	3.40	3.38
Winner	Mean	10.57	10.32	10.44	3.14	3.22	3.18	4.78	4.36	4.57	2.62	2.67	2.64
Castille	0	12.55		12.55	2.73		2.73	5.84		5.84	3.97		3.97
Castille	120	11.04	14.20	12.62	3.87	3.77	3.82	3.92	5.39	4.66	3.25	5.04	4.14
Castille	240	13.15	11.38	12.27	4.16	3.89	4.02	5.46	4.04	4.75	3.53	3.47	3.50
Castille	Mean	12.25	12.71	12.48	3.59	3.46	3.53	5.08	5.09	5.08	3.58	4.16	3.87
Win+Cas	0	10.63		10.63	2.56		2.56	5.03		5.03	2.93		2.93
Win+Cas	120	10.75	12.36	11.56	3.62	3.65	3.63	4.21	4.84	4.52	2.93	3.88	3.40
Win+Cas	240	12.84	11.55	12.19	3.91	3.82	3.86	5.54	4.31	4.92	3.44	3.44	3.44
Win+Cas	Mean	11.41	11.51	11.46	3.36	3.34	3.35	4.93	4.73	4.83	3.10	3.42	3.26
Treatment		df	SED	F	df	SED	F	df	SED	F	df	SED	F
rreatment			JLD	Prob.	l di	JLD	Prob.		JLD	Prob.	u u	JLD	Prob.
Variety		29	1.361	0.145	33	0.1012	0.002	29	0.774	0.511	29	0.579	0.042
N manager	ment	29	1.361	0.937	33	0.1012	0.83	29	0.774	0.798	29	0.579	0.591
N_rate	Home	29	1.666	0.644	33	0.124	<.001	29	0.948	0.853	29	0.709	0.727
Var x Man		29	1.924	0.794	33	0.1432	0.328	29	1.094	0.782	29	0.819	0.653
Var x Nrate	Δ	29	2.357	0.547	33	0.1754	0.974	29	1.34	0.574	29	1.003	0.378
Man x Nrat		29	2.357	0.688	33	0.1754	0.882	29	1.34	0.611	29	1.003	0.741
Var x Man		29	3.333	0.817	33	0.248	0.762	29	1.896	0.847	29	1.418	0.784

5.3.13 Crop N content

At Boxworth, increasing N rate from 0 to 240 kg N/ha increased the total N uptake from 42 to 146 kg N/ha (Table 5.158). Increasing N rate also significantly increased the amount of N in the seed, stems and pod walls. These effects were caused by a combination of greater biomass and greater tissue N concentration (Table 5.157). Canopy Managed N timings increased the total N taken up by 5 kg N/ha, but this effect was not significant. There were no differences between Winner and Castille in total N uptake or the N content of the stems, pod walls and seed.

At High Mowthorpe, increasing N rate from 0 to 240 kg N/ha increased the total N uptake from 70 to 209 kg N/ha (Table 5.160). Increasing N rate also significantly increased the amount of N in the seed, stems and pod walls. These effects were caused by a combination of greater biomass and tissue N concentration (Table 5.159). Canopy Managed N timings increased the total N taken up by 5 kg N/ha, but this effect was not significant. There were no differences between Winner and Castille in total N uptake or the N content of the stems, pod walls and seed. Winner had a greater concentration of N in the pod walls, stems and seeds than Castille (P<0.1) (Table 5.159).

At Rosemaund, increasing N rate from 0 to 240 kg N/ha increased the total N uptake from 96 to 194 kg N/ha (Table 5.162). Increasing N rate also significantly increased the amount of N in the seed, stems and pod walls. These effects were caused by a combination of greater biomass and tissue N concentration (Table 5.162). Castille took up 14 kg N/ha more than Winner into the seed. Castille had a greater N concentration in the stem and a smaller N concentration in the pod walls compared with Winner (Table 5.162). Canopy Managed N timings increased the amount of N in the seed by 10 kg N/ha (P<0.1) and significantly increased the concentration of N in the stems (Table 5.162).

Table 5.157. Boxworth. Pre-harvest measurement of nitrogen concentration for plots without Folicur.

Variety	N rate	Stem N	N %		Seed	N %		Pod wa	all N %	
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Winner	0	0.416		0.416	2.31		2.31	0.474		0.474
Winner	120	0.458	0.5	0.479	2.35	2.52	2.43	0.501	0.778	0.64
Winner	240	0.785	0.826	0.805	2.98	3.13	3.05	0.865	0.773	0.819
Winner	Mean	0.553	0.58	0.567	2.55	2.65	2.60	0.613	0.675	0.644
Castille	0	0.493		0.493	2.29		2.29	0.479		0.479
Castille	120	0.471	0.555	0.513	2.36	2.58	2.47	0.464	0.481	0.473
Castille	240	0.788	0.847	0.817	2.91	3.12	3.02	0.685	0.686	0.686
Castille	Mean	0.584	0.631	0.608	2.52	2.67	2.59	0.543	0.549	0.546
Win+Cas	0	0.454		0.454	2.30		2.30	0.477		0.477
Win+Cas	120	0.464	0.527	0.496	2.36	2.55	2.45	0.483	0.63	0.556
Win+Cas	240	0.786	0.836	0.811	2.95	3.12	3.03	0.775	0.73	0.752
Win+Cas	Mean	0.568	0.606	0.587	2.53	2.66	2.60	0.578	0.612	0.595
Treatment		df	SED	P value	df	SED	P value	df	SED	P value
Variety		22	0.051	0.43	22	0.067	0.939	21	0.038	0.017
N manager	nent	22	0.051	0.468	22	0.067	0.075	21	0.038	0.381
N_rate		22	0.062	<.001	22	0.082	<.001	21	0.047	<.001
Var x Man		22	0.072	0.846	22	0.094	0.791	21	0.054	0.471
Var x Nrate	9	22	0.088	0.868	22	0.116	0.893	21	0.066	0.17
Man x Nrat	e	22	0.088	0.869	22	0.116	0.43	21	0.066	0.122
Var x Man	x Nrate	22	0.125	0.986	22	0.164	0.98	21	0.093	0.172

Table 5.158. Boxworth. Pre-harvest measurement of N content for plots without Folicur.

Variety	N rate	Seed N yield (kg/ha)			Stem (kg/ha	N yield		Pod wa	all N yie	ld	Total N yield (kg/ha)		
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Winner	0	27.7		27.7	5.8		5.8	4.9		4.9	38.4		38.4
Winner	120	61.9	67.5	64.7	11.7	12.9	12.3	10.5	20.0	15.3	84.1	100.4	92.3
Winner	240	94.1	105.8	99.9	28.2	24.8	26.5	28.1	20.4	24.2	150.4	154.3	152.4
Winner	Mean	61.2	67.0	64.1	15.2	14.5	14.9	14.5	15.1	14.8	91.0	97.7	94.3
Castille	0	29.4		29.4	8.7		8.7	7.0		7.0	45.1		45.1
Castille	120	65.4	76.0	70.7	12.0	12.7	12.3	11.1	11.7	11.4	88.4	100.5	94.4
Castille	240	93.9	97.6	95.8	25.3	21.5	23.4	21.5	17.8	19.7	140.8	136.9	138.9
Castille	Mean	62.9	67.7	65.3	15.3	14.3	14.8	13.2	12.2	12.7	91.4	94.2	92.8
Win+Cas	0	28.6		28.6	7.2		7.2	5.9		5.9	41.7		41.7
Win+Cas	120	63.6	71.8	67.7	11.8	12.8	12.3	10.8	15.9	13.3	86.3	100.4	93.3
Win+Cas	240	94.0	101.7	97.9	26.8	23.1	25.0	24.8	19.1	22.0	145.6	145.6	145.6
Win+Cas	Mean	62.1	67.3	64.7	15.3	14.4	14.8	13.8	13.6	13.7	91.2	95.9	93.6
				_			_	1		_			_
Treatment		df	SED	P value	df	SED	P value	df	SED	P value	df	SED	P value
Variety		22	3.3	0.723	22	2.15	0.981	21	1.556	0.189	21	6.01	0.799
N manager	ment	22	3.3	0.125	22	2.15	0.681	21	1.556	0.904	21	6.01	0.439
N_rate		22	4.04	<.001	22	2.63	<.001	21	1.906	<.001	21	7.37	<.001
Var x Man		22	4.67	0.883	22	3.04	0.952	21	2.201	0.606	21	8.51	0.743
Var x Nrate	Э	22	5.71	0.463	22	3.72	0.529	21	2.696	0.183	21	10.42	0.371
Man x Nrat	:e	22	5.71	0.538	22	3.72	0.655	21	2.696	0.034	21	10.42	0.549
Var x Man	x Nrate	22	8.08	0.722	22	5.26	0.999	21	3.812	0.25	21	14.73	0.966

Table 5.159. High Mowthorpe. Pre-harvest measurement of nitrogen concentration for plots without Folicur.

Variety	N rate	Stem N	۱ %		Seed	N %		Pod wa	ıll N %	
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Winner	0	0.42		0.42	2.97		2.97	1.344		1.344
Winner	120	0.512	0.486	0.499	2.31	2.43	2.37	1.049	1.204	1.126
Winner	240	0.694	0.622	0.658	2.58	2.71	2.64	1.419	1.539	1.479
Winner	Mean	0.542	0.509	0.525	2.62	2.70	2.66	1.271	1.362	1.316
Castille	0	0.44		0.44	2.30		2.30	1.167		1.167
Castille	120	0.428	0.443	0.436	2.31	2.15	2.23	1.168	1.052	1.11
Castille	240	0.536	0.591	0.564	2.69	2.69	2.69	1.272	1.353	1.312
Castille	Mean	0.468	0.491	0.48	2.43	2.38	2.41	1.202	1.191	1.197
Win+Cas	0	0.43		0.43	2.63		2.63	1.255		1.255
Win+Cas	120	0.47	0.464	0.467	2.31	2.29	2.30	1.108	1.128	1.118
Win+Cas	240	0.615	0.606	0.611	2.64	2.70	2.67	1.346	1.446	1.396
Win+Cas	Mean	0.505	0.5	0.503	2.53	2.54	2.53	1.236	1.276	1.256
Treatment		df	SED	P value	df	SED	P value	df	SED	P value
Variety		32	0.024	0.066	33	0.148	0.094	33	0.062	0.06
N manager	nent	32	0.024	0.84	33	0.148	0.923	33	0.062	0.521
N_rate		32	0.029	<.001	33	0.181	0.093	33	0.075	0.003
Var x Man	Var x Man		0.034	0.251	33	0.209	0.641	33	0.087	0.408
Var x Nrate)	32	0.041	0.143	33	0.255	0.137	33	0.107	0.499
Man x Nrat	е	32	0.041	0.988	33	0.255	0.968	33	0.107	0.782
Var x Man	x Nrate	32	0.058	0.549	33	0.361	0.928	33	0.151	0.629

Table 5.160. High Mowthorpe. Pre-harvest measurement of N content for plots without Folicur.

Variety	N rate	Seed (kg/ha	N yield		Stem (kg/ha	N yield		Pod wa	all N yiel	d	Total N	l yield (l	kg/ha)
	kg/ha	Conv	CM	Mean	Conv	cM	Mean	Conv	CM	Mean	Conv	CM	Mean
Winner	0	35.5		35.5	7.7		7.7	25.2		25.2	68.4		68.4
Winner	120	60.1	59.6	59.8	23.4	21.4	22.4	54.1	65.2	59.7	137.6	146.2	141.9
Winner	240	76.6	83.2	79.9	34.8	31.8	33.3	85.6	95.1	90.4	196.9	210.2	203.6
Winner	Mean	57.4	59.4	58.4	22.0	20.3	21.1	55.0	61.9	58.4	134.3	141.6	138.0
Castille	0	30.9		30.9	9.3		9.3	31.7		31.7	71.9		71.9
Castille	120	65.2	57.5	61.4	26.7	24.3	25.5	79.9	70.1	75.0	168.8	151.9	160.3
Castille	240	92.1	91.8	91.9	27.3	34.0	30.7	81.4	101.4	91.4	200.8	227.2	214.0
Castille	Mean	62.7	60.1	61.4	21.1	22.5	21.8	64.3	67.7	66.0	147.2	150.3	148.7
Win+Cas	0	33.2		33.2	8.5		8.5	28.5		28.5	70.2		70.2
Win+Cas	120	62.6	58.6	60.6	25.0	22.9	23.9	67.0	67.6	67.3	153.2	149.1	151.1
Win+Cas	240	84.3	87.5	85.9	31.0	32.9	32.0	83.5	98.3	90.9	198.9	218.7	208.8
Win+Cas	Mean	60.1	59.8	59.9	21.5	21.4	21.5	59.7	64.8	62.2	140.7	146.0	143.4
Treatment		df	SED	P value	df	SED	P value	df	SED	P value	df	SED	P value
Variety		33	3.07	0.338	32	2.23	0.768	33	6.11	0.221	32	10.07	0.293
N manager	ment	33	3.07	0.925	32	2.23	0.964	33	6.11	0.406	32	10.07	0.606
N_rate		33	3.76	<.001	32	2.74	<.001	33	7.49	<.001	32	12.33	<.001
Var x Man		33	4.34	0.447	32	3.16	0.496	33	8.64	0.778	32	14.24	0.839
Var x Nrate	Э	33	5.32	0.098	32	3.87	0.562	33	10.59	0.634	32	17.44	0.833
Man x Nrat	:e	33	5.32	0.635	32	3.87	0.758	33	10.59	0.541	32	17.44	0.588
Var x Man	x Nrate	33	7.52	0.863	32	5.47	0.591	33	14.97	0.572	32	24.66	0.731

Table 5.161. Rosemaund. Pre-harvest measurement of nitrogen concentration for plots without Folicur.

Variety	N rate	Stem N	N %		Seed	N %		Pod wa	all N %	
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Winner	0	0.347		0.347	2.30		2.30	0.48		0.48
Winner	120	0.429	0.568	0.498	2.52	2.85	2.69	0.675	0.653	0.664
Winner	240	0.717	0.878	0.798	2.92	3.17	3.04	0.87	1.051	0.96
Winner	Mean	0.498	0.597	0.548	2.58	2.77	2.68	0.675	0.728	0.701
Castille	0	0.379		0.379	2.36		2.36	0.421		0.421
Castille	120	0.506	0.526	0.516	2.68	2.84	2.76	0.603	0.633	0.618
Castille	240	1.004	0.819	0.912	3.14	3.33	3.24	0.792	0.912	0.852
Castille	Mean	0.63	0.575	0.602	2.72	2.84	2.78	0.605	0.655	0.630
Win+Cas	0	0.363		0.363	2.33		2.33	0.451		0.451
Win+Cas	120	0.467	0.547	0.507	2.60	2.84	2.72	0.639	0.643	0.641
Win+Cas	240	0.861	0.849	0.855	3.03	3.25	3.14	0.831	0.981	0.906
Win+Cas	Mean	0.564	0.586	0.575	2.65	2.81	2.73	0.640	0.692	0.666
					1					
Treatment		df	SED	P value	df	SED	P value	df	SED	P value
				value			value			value
Variety		29	0.046	0.246	31	0.045	0.026	31	0.035	0.053
N manager	nent	29	0.046	0.63	31	0.045	0.002	31	0.035	0.154
N_rate		29	0.057	<.001	31	0.055	<.001	31	0.043	<.001
– Var x Man		29	0.065	0.105	31	0.063	0.431	31	0.05	0.966
Var x Nrate	9	29	0.08	0.659	31	0.077	0.39	31	0.061	0.753
Man x Nrat	e	29	0.08	0.681	31	0.077	0.063	31	0.061	0.159
Var x Man	x Nrate	29	0.113	0.316	31	0.109	0.738	31	0.087	0.811

Table 5.162. Rosemaund. Pre-harvest measurement of N content for plots without Folicur.

Variety	N rate	Seed N	Seed N yield (kg/ha)		Stem (kg/ha	N yield		Pod wall N yield (kg/ha)			Total N	l yield (l	kg/ha)
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Winner	0	55.5		55.5	14.0		14.0	10.4		10.4	85.4		85.4
Winner	120	84.8	100.3	92.6	19.1	23.8	21.5	18.6	17.7	18.2	122.6	141.9	132.3
Winner	240	103.1	118.8	110.9	37.5	40.4	39.0	29.7	36.1	32.9	171.3	195.2	183.3
Winner	Mean	81.1	91.5	86.3	23.6	26.1	24.8	19.6	21.4	20.5	126.4	140.8	133.6
Castille	0	65.3		65.3	22.8		22.8	18.2		18.2	106.3		106.3
Castille	120	103.4	107.4	105.4	18.2	28.0	23.1	19.6	34.1	26.8	141.3	169.4	155.4
Castille	240	130.6	129.4	130.0	55.4	33.0	44.2	28.4	32.8	30.6	214.4	194.8	204.6
Castille	Mean	99.8	100.7	100.2	32.1	27.9	30.0	22.1	28.4	25.2	154.0	156.8	155.4
Win+Cas	0	60.4		60.4	18.4		18.4	14.3		14.3	95.9		95.9
Win+Cas	120	94.1	103.9	99.0	18.7	25.9	22.3	19.1	25.9	22.5	131.9	155.7	143.8
Win+Cas	240	116.8	124.1	120.4	46.5	36.7	41.6	29.1	34.4	31.7	192.8	195.0	193.9
Win+Cas	Mean	90.5	96.1	93.3	27.8	27.0	27.4	20.8	24.9	22.9	140.2	148.8	144.5
]]		
Treatment		df	SED	Р	df	SED	Р	df	SED	Р	df	SED	Р
				value			value			value			value
Variety	_	31	3.05	<.001	29	3.73	0.173	29	3.87	0.229	29	8.56	0.017
N manager	nent	31	3.05	0.073	29	3.73	0.825	29	3.87	0.305	29	8.56	0.322
N_rate		31	3.74	<.001	29	4.56	<.001	29	4.74	0.004	29	10.49	<.001
Var x Man		31	4.32	0.131	29	5.27	0.375	29	5.47	0.57	29	12.11	0.506
Var x Nrate		31	5.29	0.461	29	6.45	0.741	29	6.7	0.448	29	14.83	0.994
Man x Nrat	:e	31	5.29	0.412	29	6.45	0.191	29	6.7	0.756	29	14.83	0.466
Var x Man	x Nrate	31	7.47	0.521	29	9.13	0.223	29	9.48	0.61	29	20.97	0.421

5.3.14 Seed size and seed number

At Boxworth, Canopy Management increased seed weight by 0.11 g, but this effect was not statistically significant (Table 5.163). None of the other treatments affected seed size. As a result the differences in yield were mainly caused by differences in seeds/m². Castille and increasing N rate both significantly increased seed number (Table 5.164).

At High Mowthorpe, there was no evidence for Canopy Management to affect seed size. The 300 kg N/ha treatment consistently had a greater seed weight than the 60 and 180 N rates. Castille had significantly heavier seeds than Winner (P<0.01). Castille and increasing N rate both significantly increased seed number (Table 5.166). Canopy Management increased the number of seeds for Castille (P<0.1).

At Rosemaund, Canopy Management, Castille, Folicur and greater N rates all resulted in significantly heavier seeds (Table 5.167). The seed number was significantly increased by the Conventional N timings, Winner and greater N rates (Table 5.168).

Table 5.163. Boxworth. Thousand seed weight

Variety	N rate	No Fo	licur		Folicur	(0.5 1/	ha)	Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	5.84		5.84	5.51		5.51	5.68		5.68
Winner	60	5.59	5.87	5.73	5.81	5.50	5.66	5.70	5.68	5.69
Winner	180	5.76	5.72	5.74	5.58	6.44	6.01	5.67	6.08	5.87
Winner	300	5.60	5.87	5.73	5.82	5.77	5.79	5.71	5.82	5.76
Winner	Mean	5.70	5.82	5.76	5.68	5.80	5.74	5.69	5.81	5.75
Castille	0	5.91		5.91	5.93		5.93	5.92		5.92
Castille	60	5.76	5.81	5.78	5.67	6.12	5.89	5.71	5.96	5.84
Castille	180	5.71	5.74	5.72	5.52	5.65	5.59	5.62	5.69	5.65
Castille	300	5.87	5.97	5.92	5.89	5.75	5.82	5.88	5.86	5.87
Castille	Mean	5.81	5.86	5.83	5.75	5.86	5.81	5.78	5.86	5.82
Win+Cas	0	5.87		5.87	5.72		5.72	5.80		5.80
Win+Cas	60	5.67	5.84	5.76	5.74	5.81	5.77	5.71	5.82	5.77
Win+Cas	180	5.73	5.73	5.73	5.55	6.04	5.80	5.64	5.88	5.76
Win+Cas	300	5.73	5.92	5.83	5.85	5.76	5.81	5.79	5.84	5.82
Win+Cas	Mean	5.75	5.84	5.80	5.72	5.83	5.77	5.73	5.84	5.79
Treatment	t		df	SED	P-Valu	e				
Folicur			2	0.119	0.871					
Variety			60	0.072	0.339					
N manage	ment		60	0.072	0.164					
Nrate Fol x Var			60 3.72	0.102 0.139	0.945 0.938					
Fol x Man			3.72	0.139	0.835					
Var x Man			60	0.102	0.747					
Fol x Nrate			8.47	0.172	0.740					
Var x Nrat			60	0.144	0.131					
Man x Nra	te		60	0.144	0.662					
Fol x Var	x Man		8.47	0.172	0.811					
Fol x Var x Nrate	K		20.83	0.225	0.260					
Fol x Man	x Nrate		20.83	0.225	0.279					
Var x Man		;	60	0.204	0.518					
Fol x Var	x Man x	Nrate	42.03	0.303	0.190					

Table 5.164. Boxworth. Seeds per m^2

Variety	N rate	No Folio	cur		Folicur	(0.5 l/ha	1)	Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	20398		20398	18236		18236	19317		19317
Winner	60	33391	30701	32046	31480	33723	32602	32436	32212	32324
Winner	180	58534	59837	59186	58277	56294	57285	58406	58066	58236
Winner	300	64159	55298	59728	58674	63661	61167	61417	59479	60448
Winner	Mean	44121	41558	42840	41667	42979	42323	42894	42269	42581
0 1111	0	00007		00007	000/7		000/7	00000		00000
Castille	0	22397	27007	22397	23267	25.447	23267	22832	2//52	22832
Castille	60	35103	37887	36495	37271	35416	36344	36187	36652	36419
Castille	180	59406	62018	60712	61481	66120	63801	60443	64069	62256
Castille	300 Maan	63114	63332	63223 45707	65020	59454	62237	64067 45882	61393	62730
Castille	Mean	45005	46408	45/0/	46760	46064	46412	45882	46236	46059
Win+Cas	0	21397		21397	20752		20752	21075		21075
Win+Cas	60	34247	34294	34271	34376	34570	34473	34311	34432	34372
Win+Cas	180	58970	60927	59949	59879	61207	60543	59424	61067	60246
Win+Cas	300	63637	59315	61476	61847	61557	61702	62742	60436	61589
Win+Cas	Mean	44563	43983	44273	44213	44522	44367	44388	44252	44320
Treatment	t		df	SED	P-Value	:				
Folicur			2	3025.5	0.978					
Variety			60	1174.8	0.004					
N manage	ment		60	1174.8	0.908					
Nrate			60	1661.4	<.001					
Fol x Var			2.65	3245.6	0.605					
Fol x Man			2.65	3245.6	0.707					
Var x Man			60	1661.4	0.678					
Fol x Nrate	е		4.19	3646.1	0.985					
Var x Nrat	te		60	2349.6	0.944					
Man x Nra	ite		60	2349.6	0.697					
Fol x Var	x Man		4.19	3646.1	0.209					
Fol x Var > Nrate	X		8.15	4337.6	0.670					
Fol x Man	x Nrate		8.15	4337.6	0.893					
Var x Man	x Nrate)	60	3322.9	0.9					
Fol x Var x	x Man x	Nrate	18.18	5464.1	0.261					

[†] calculated from combine seed yield

Table 5.165. High Mowthorpe. Thousand seed weight

Variety	N rate	No Fo	licur		Folicur	(0.5 1/	ha)	Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	5.12		5.12	5.16		5.16	5.14	5.14	5.14
Winner	60	5.05	5.12	5.08	5.22	5.13	5.17	5.13	5.12	5.13
Winner	180	5.25	5.20	5.23	5.12	4.99	5.05	5.18	5.10	5.14
Winner	300	5.43	5.27	5.35	5.13	5.18	5.16	5.28	5.22	5.25
Winner	Mean	5.21	5.18	5.19	5.16	5.12	5.14	5.18	5.15	5.16
Castille	0	5.46		5.46	5.38		5.38	5.42	5.42	5.42
Castille	60	5.20	5.15	5.17	5.08	5.21	5.14	5.14	5.18	5.16
Castille	180	5.07	5.15	5.11	5.18	5.28	5.23	5.12	5.21	5.17
Castille	300	5.44	5.33	5.38	5.44	5.44	5.44	5.44	5.39	5.41
Castille	Mean	5.29	5.27	5.28	5.27	5.33	5.30	5.28	5.30	5.29
• • • • • • • • • • • • • • • • • • • •		0.27	0.27	0.20	0.27	0.00	0.00	0.20	0.00	0.27
Win+Cas	0	5.29		5.29	5.27		5.27	5.28		5.28
Win+Cas	60	5.12	5.13	5.13	5.15	5.17	5.16	5.13	5.15	5.14
Win+Cas	180	5.16	5.17	5.17	5.15	5.13	5.14	5.15	5.15	5.15
Win+Cas	300	5.44	5.30	5.37	5.28	5.31	5.30	5.36	5.30	5.33
Win+Cas	Mean	5.25	5.22	5.24	5.21	5.22	5.22	5.23	5.22	5.23
Treatment	t		df	SED	P-Valu	е				
				0.017						
Folicur			3	0.016	0.277					
Variety			90	0.041	0.003					
N manage Nrate	ment		90 90	0.041 0.058	0.815					
			70.96		0.003					
Fol x Var Fol x Man			70.96	0.044 0.044	0.391 0.646					
Var x Man			70.90 90	0.044	0.503					
Fol x Nrate			92.29	0.038	0.873					
Var x Nrat			90	0.073	0.073					
Man x Nra			90	0.083	0.936					
Fol x Var			92.29	0.003	0.582					
Fol x Var			92.63	0.073	0.133					
Fol x Man			92.63	0.111	0.845					
Var x Man			90	0.117	0.865					
Fol x Var			91.54	0.161	0.809					

Table 5.166. High Mowthorpe. Seeds/ m^2

	N	l								I
Variety	rate	No Foli	cur		Folicur	(0.5 l/ha	a)	Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	22731		22731	21668		21668	22200		22200
Winner	60	33577	37020	35298	39994	38384	39189	36786	37702	37244
Winner	180	61252	53637	57445	66331	63243	64787	63791	5844	61116
Winner	300	56573	62149	59361	67903	62779	65341	62238	62464	62351
Winner	Mean	43533	43884	43709	48974	46518	47746	46254	45201	45728
Castille	0	24744		24744	26646		26646	25695		25695
Castille	60	42629	46254	44441	43759	51326	47542	43194	48790	45992
Castille	180	63124	62668	62896	68940	69539	69239	66032	66103	66068
Castille	300	63803	67007	65405	67195	74408	70801	65499	70708	68103
Castille	Mean	48575	50168	49372	51635	55480	53557	50105	52824	51464
Win+Cas	0	23738		23738	24157		24157	23947		23947
Win+Cas	60	38103	41637	39870	41876	44855	43366	39990	43246	41618
Win+Cas	180	62188	58153	60170	67636	66391	67013	64912	62272	63592
Win+Cas	300	60188	64578	62383	67549	68594	68071	63869	66586	65227
Win+Cas	Mean	46054	47026	46540	50304	50999	50652	48179	49013	48596
Treatmen	t		df	SED	 P-Value)				
Folicur			3	1994.3	0.131					
Variety			90	1064.5	<.001					
N manage	ement		90	1064.5	0.436					
Nrate			90	1505.5	<.001					
Fol x Var			4.94	2260.6	0.945					
Fol x Man			4.94	2260.6	0.897					
Var x Mar	1		90	1505.5	0.080					
Fol x Nrat	е		10.08	2716.1	0.160					
Var x Nra	te		90	2129.1	0.361					
Man x Nra	ate		90	2129.1	0.188					
Fol x Var	x Man		10.08	2716.1	0.238					
Fol x Var	x Nrate		23.75	3451.1	0.899					
Fol x Man	x Nrate		23.75	3451.1	0.790					
Var x Mar	ı x Nrate	;	90	3010.9	0.787					
Fol x Var	x Man x	Nrate	51.86	4579.9	0.419					
t calculate	ad fram	combin	hoos or	viold						

[†] calculated from combine seed yield

Table 5.167. Rosemaund. Thousand seed weight

Variety	N rate	No Fo	licur		Folicur	(1.0 l/l	na)	Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	5.26		5.26	5.31		5.31	5.28		5.28
Winner	60	5.01	5.28	5.15	5.03	5.68	5.35	5.02	5.48	5.25
Winner	180	5.25	5.56	5.40	5.29	5.71	5.50	5.27	5.63	5.45
Winner	300	5.35	5.82	5.59	5.54	5.83	5.69	5.45	5.83	5.64
Winner	Mean	5.22	5.48	5.35	5.29	5.63	5.46	5.25	5.56	5.41
Castille	0	6.15		6.15	6.43		6.43	6.29		6.29
Castille	60	5.74	6.07	5.90	5.94	6.20	6.07	5.84	6.13	5.99
Castille	180	5.92	6.28	6.10	6.06	6.31	6.18	5.99	6.30	6.14
Castille	300	6.33	6.64	6.48	6.17	6.56	6.36	6.25	6.60	6.42
Castille	Mean	6.04	6.29	6.16	6.15	6.37	6.26	6.09	6.33	6.21
Win+Cas	0	5.71		5.71	5.87		5.87	5.79		5.79
Win+Cas	60	5.38	5.67	5.53	5.49	5.94	5.71	5.43	5.81	5.62
Win+Cas Win+Cas	180	5.59	5.92	5.75	5.67	6.01	5.84	5.63	5.96	5.80
Win+Cas Win+Cas	300	5.84		6.04	5.85			5.85		6.03
			6.23			6.20	6.02		6.21	
Win+Cas	Mean	5.63	5.88	5.76	5.72	6.00	5.86	5.67	5.94	5.81
Treatment	t		df	SED	P- Value					
Folicur			3	0.028	0.031					
Variety			90	0.044	<.001					
N manage	ment		90	0.044	<.001					
Nrate			90	0.062	<.001					
Fol x Var			30.78	0.052	0.898					
Fol x Man			30.78	0.052	0.759					
Var x Man			90	0.062	0.456					
Fol x Nrate			75.78	0.081	0.384					
Var x Nrat			90	0.088	0.057					
Man x Nra			90	0.088	0.008					
Fol x Var			75.78	0.081	0.539					
Fol x Var			91.68	0.119	0.355					
Fol x Man Var x Man			91.68 90	0.119 0.124	0.859 0.913					
Fol x Var			90 92.87	0.124	0.529					
I UI X Val 2	N IVIALL X	iviale	72.07	0.172	0.329					

Table 5.168. Rosemaund. Seeds/m²

Variety	N rate	No Folio	cur		Folicur	(1.0 l/ha	n)	Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Winner	0	45801		45801	43932		43932	44867		44867
Winner	60	66827	62172	64499	68610	60783	64696	67719	61477	64598
Winner	180	75676	62474	69075	74075	71619	72847	74876	67047	70961
Winner	300	74289	69512	71901	73615	71718	72666	73952	70615	72283
Winner	Mean	65648	59990	62819	65058	62013	63536	65353	61001	63177
Castille	0	44411		44411	38248		38248	41330		41330
Castille	60	68842	59748	64295	59203	53017	56110	64023	56382	60202
Castille	180	73827	64526	69176	69195	59681	64438	71511	62104	66807
Castille	300	69256	56393	62824	71550	59611	65580	70403	58002	64202
Castille	Mean	64084	56270	60177	59549	52639	56094	61816	54454	58135
Win+Cas	0	45106		45106	41090		41090	43098		43098
Win+Cas	60	67835	60960	64397	63907	56900	60403	65871	58930	62400
Win+Cas	180	74751	63500	69126	71635	65650	68643	73193	64575	68884
Win+Cas	300	71772	62953	67363	72582	65664	69123	72177	64309	68243
Win+Cas	Mean	64866	58130	61498	62304	57326	59815	63585	57728	60656
		•						•		•
Treatmen	t		df	SED	P-Value)				
Folicur			3	3117	0.627					
Variety			90	1080.2	<.001					
N manage	ement		90	1080.2	<.001					
Nrate			90	1527.6	<.001					
Fol x Var			3.76	3298.8	0.029					
Fol x Man			3.76	3298.8	0.418					
Var x Mar	1		90	1527.6	0.167					
Fol x Nrat	е		5.53	3635.3	0.169					
Var x Nra	te		90	2160.3	0.441					
Man x Nra	ate		90	2160.3	0.022					
Fol x Var	x Man		5.53	3635.3	0.693					
Fol x Var	x Nrate		9.93	4228.8	0.278					
Fol x Man	x Nrate		9.93	4228.8	0.797					
Var x Mar	ı x Nrate	;	90	3055.2	0.445					
Fol x Var	x Man x	Nrate	21.25	5217	0.575					

† calculated from combine seed yield

6. Discussion

6.1 Effects of Canopy Management on yield

The regression analyses showed that the Canopy Managed and Conventional N strategies did not result in significantly different N optima in any of the experiments. In the 2005/6 season the Canopy Management approach increased yield over the Conventionally timed N treatments at the sites with a moderate or large combined supply of N in the soil and crop in February (soil N supply – SNS). The yield of Winner was increased by 0.36 t/ha at Boxworth and 0.15 t/ha at Rosemaund, and the yield of Castille was increased by 0.10 t/ha at Boxworth with no effect at Rosemaund (Table 6.1). The yield increases were associated with reduced lodging as a result of stem shortening. Measurements in later experiments showed that Canopy Management reduced height by up to 10 cm. Canopy Management was also shown to reduce the size of the canopy at flowering. This will have helped the crops, which would otherwise have produced an over-large canopy, to achieve the optimum sized canopy and set more seeds/m². At High Mowthorpe the SNS was just 67 kg/ha and the Canopy Management approach had no effect on Winner and slightly reduced the yield of Castille. This result demonstrated that a greater proportion of N must be applied early to crops with a small SNS to give the crop sufficient time to take up enough N by flowering to achieve the optimum GAI. This was used to modify the Canopy Management approach for later experiments.

Table 6.1. 2005/6 experiment summary.

†Jan/Feb soil mineral N (kg/ha) Jan/Feb crop N content (kg/ha) Jan/Feb GAI	BX06 50 72 1.40		HM06 35 32 0.57		RM06 60 33 0.63	
N timing strategy	Conv	CM	Conv	CM	Conv	CM
Optimum N rate (kg/ha)	70	70	239	239	224	224
N rate at 1 st split (end Feb/early March)	35	0	120	40	112	0
N rate at 2 nd split (early stem ext.)	35	70	119	140	112	140
N rate at 3 rd split (yellow bud to mid flower)	0	0	0	59	0	84
Yield at opt N Winner (t/ha)	3.40	3.76	3.69	3.62	4.40	4.55
Yield at opt N Winner + Folicur (t/ha)	3.60	3.74	3.86	3.89	4.62	4.58
Yield at opt N Castille (t/ha)	4.04	4.12	4.56	4.43	4.90	4.91
Yield at opt N Castille + Folicur (t/ha)	4.19	4.31	4.84	4.74	4.99	4.92

 † Measured to 90 cm at Boxworth and Rosemaund and 60 cm depth at High Mowthorpe.

Conv – conventional N timing strategy; CM – Canopy Managed N timing strategy.

In the 2006/7 season, the crops at each site had moderate to large canopies in February and in a typical season would have been expected to produce over-large canopies and to benefit from a Canopy Managed approach. However, negligible rainfall between the end of March and early May restricted canopy growth which resulted in moderate sized canopies at flowering. Across all the treatments at Boxworth, Canopy Management increased yield slightly by 0.08 t/ha (Table 6.2; P=0.082). This advantage was greater at high N rates and for Winner, for example at 300 and 360 kg N/ha Canopy Manegement gave a 0.28 t/ha yield advantage. The yield increase was shown to result from less early lodging as a result of crop shortening and a small increase in seeds/m² which was probably caused by achieving a canopy size at flowering that was closer to the optimum. At Rosemaund Canopy Management did not affect yield despite the very dry spring. There was no effect on yield because Canopy Management reduced the size of the canopy at flowering from above the optimum to slightly below the optimum, and because there was only slight lodging at this site. At High Mowthorpe Canopy Management reduced yield by 0.14 t/ha. The spring drought was most severe at this site which resulted in the development of a sub-optimal canopy at flowering. Canopy Management reduced the canopy size further and this resulted in slightly fewer seeds/m² set.

Table 6.2. 2006/7 experiment summary.

	BX07		HM07		RM07	
[†] Jan/Feb soil mineral N (kg/ha)	43		58		54	
Jan/Feb crop N content (kg/ha)	92		54		61	
Jan/Feb GAI	2.37		1.21		2.08	
N timing strategy	Conv	CM	Conv	CM	Conv	CM
Optimum N rate (kg/ha)	54	54	156	156	165	165
N rate at 1 st split (end Feb/early March)	0	27	78	0	83	0
N rate at 2 nd split (early stem ext.)	54	27	78	120	83	100
N rate at 3 rd split (yellow bud to mid flower)	0	0	0	36	0	65
Yield at opt N Winner (t/ha)	3.05	3.05	4.50	4.31	4.66	4.66
Yield at opt N Winner + Folicur (t/ha)	2.90	3.06	4.64	4.42	4.88	4.84
Yield at opt N Castille (t/ha)	3.66	3.63	5.20	5.12	5.04	4.99
Yield at opt N Castille + Folicur (t/ha)	3.51	3.63	5.17	5.10	5.09	5.11

 $^{\mathsf{T}}$ Measured to 90 cm at Boxworth and Rosemaund and 60 cm depth at High Mowthorpe.

Conv – conventional N timing strategy; CM – Canopy Managed N timing strategy.

In the 2007/8 season the crops at Boxworth and High Mowthorpe were very small in February following slow emergence during the dry autumn and had a modest amount of mineral N in the soil (Table 6.3). After the first year the Canopy Management approach was further developed to be applicable for crops with a small SNS by

including an estimate of the latest date when the N should be applied to give the crop sufficient time to build the optimum sized canopy. This assumed a rate of crop N uptake of 3 kg N/ha. Based on this 40 to 60 kg N/ha was applied at the first Conventional split timing (early March) at these sites compared with 118 to 128 kg N/ha for the Conventional strategy. Overall, there were no differences in yield between the two strategies at Boxworth and High Mowthorpe indicating that the Canopy Management strategy is appropriate for crops with a small SNS. The crop at Rosemaund also had a small SNS, but with a moderate sized canopy and a very small amount of soil N. The original Canopy Management principles were tested at this site with all of the N required for the optimum canopy applied at the 2nd Conventional split timing (31 March). At this site Canopy Management did not affect the yield of Winner and reduced the yield of Castille by 0.29 t/ha. If the modified Canopy Management principles had been applied then 50 kg N/ha would have been applied in early March which is likely to have prevented any yield penalty and may have increased the yield of Winner.

Table 6.3. 2007/8 experiment summary.

	BX08		HM08		RM08	
[†] Jan/Feb soil mineral N (kg/ha)	58		38		12	
Jan/Feb crop N content (kg/ha)	8		10		50	
Jan/Feb GAI	0.19		0.10		1.36	
N timing strategy	Conv	CM	Conv	CM	Conv	CM
Optimum N rate (kg/ha)	256	256	236	236	128	128
N rate at 1 st split (end Feb/early March)	128	40	118	60	64	0
N rate at 2 nd split (early stem ext.)	128	180	118	170	64	128
N rate at 3 rd split (yellow bud to mid flower)	0	36	0	6	0	0
Yield at opt N Winner (t/ha)	3.82	3.80	3.42	3.43	4.01	3.98
Yield at opt N Winner + Folicur (t/ha)	3.84	3.92	3.76	3.65	4.20	4.18
Yield at opt N Castille (t/ha)	4.00	3.99	3.78	3.78	4.49	4.21
Yield at opt N Castille + Folicur (t/ha)	4.06	4.10	4.04	4.16	4.45	4.14

 † Measured to 90 cm at Boxworth and Rosemaund and 60 cm depth at High Mowthorpe.

Conv – conventional N timing strategy; CM – Canopy Managed N timing strategy.

6.2 Testing the Canopy Management principles

6.2.1 Soil N uptake efficiency

The efficiency with which the crop took up soil N was calculated by dividing the amount of N taken up by the crop at harvest by the amount of mineral N measured in the soil and the crop N in February. Soil mineral N was measured to 90 cm at Rosemaund and Boxworth and to 60 cm at High Mowthorpe. Overall 9 site/seasons were tested including cv Winner from each of the three sites in 2006 and 2007, and

an average of Winner and Castille in 2008. On average the efficiency with which soil N was taken up was estimated to be 107% (Figure 6.1) and there were no systematic differences between the sites or seasons. The data in Figure 6.1 indicates that crops took up on average an additional 4 to 11 kg N/ha compared with the amount of mineral N measured in the soil in February. The uptake efficiency ranged from 63% at Boxworth in 2008 to between 139% and 149% at Boxworth 2006, High Mowthorpe 2008 and Rosemaund 2008. Boxworth 2008 had a very low plant population which may have resulted in a sub-optimal root length density and a lower soil N uptake efficiency. Soil N uptake efficiency values of significantly more than 100% were observed in some crops, which may simply be the result of sampling variation, or may indicate that these crops took up some N which was mineralised after February. In 2008, it was possible to compare the two varieties and this showed that Castille had a greater soil N uptake efficiency at each site with an average soil N uptake efficiency of 130% compared with 113% for Winner. This increase was similar in size to the greater amount of yield taken into the seed of higher yielding Castille.

No other studies can be found which have measured soil N uptake efficiency in oilseed rape. In wheat, studies have generally found the crop takes up 20 to 50 kg N/ha more than amount of N measured in the soil in spring (Stokes *et al.*, 1997; Webb and Sylvester-Bradley, 1995; Sylvester-Bradley *et al.*, 2008). This study only includes nine sites, but indicates that oilseed rape may take up less N that is mineralised after February compared with wheat. This may be because oilseed rape stops taking N up earlier than wheat and therefore has less time to take up N that is mineralised as the soil warms up in the spring. Differences in rooting between wheat and oilseed rape may also be a factor. Further work must investigate how much N that is mineralised after after February is taken up by oilseed rape, and this must also take account of any N that is deposited from the atmosphere during the growth period.

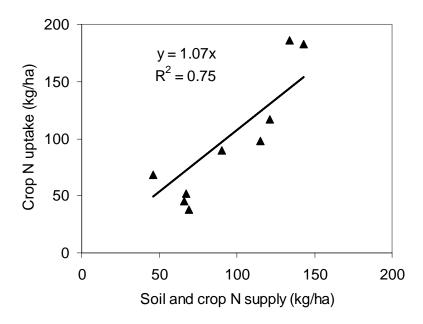


Figure 6.1. Relationship between the combibed soil mineral N and crop N measured in February and the crop N uptake at harvest for crops grown at Boxworth, High Mowthorpe and Rosemaund in 2006, 2007 and 2008.

6.2.2 Fertiliser N uptake efficiency

The equivalent efficiency with which fertiliser N was taken up by the crop was calculated by subtracting the N taken up by the crop without fertiliser from the N taken up with fertiliser and dividing by the rate of fertiliser N applied. This was carried out for 24 crops across the three sites and three seasons. At the N rate that was closest to the economic optimum (which was 167 kg N/ha on average) the fertiliser N uptake efficiency was calculated at 57%. The coefficient of variation of this calculation across the 24 crops was 23%. Across the 3 sites, the fertiliser N uptake efficiency was lower in 2008 (47%) compared with 63% in 2006 and 63% in 2007. There were no systematic differences between sites or between the Canopy Managed and Conventional N timings. At the lowest fertiliser N rate that fertiliser N uptake efficiency could be calculated (which averaged 100 kg N/ha across the trials) the fertiliser N uptake efficiency was 67%. At 240 kg N/ha the average Fertiliser N uptake efficiency was 43%. These differences emphasise the importance of calculating the N uptake efficiency at the economically optimum N rate. Few other studies can be found which have measured the fertiliser N uptake efficiency in oilseed rape. Schjoerring et al. (1995) measured a fertiliser uptake efficiency of 50% on a sandy loam, but it is not known if the N rate used was the economic optimum. In wheat Gryllis et al. (1987) observed that shallow soils over chalk had a slightly lower fertiliser uptake efficiency compared with other soil types. This current study found no evidence for this in

oilseed rape, although it should be recognised that insufficient experiments have been performed to make anything other than a cursory comparison of soil types. In 2008, there was little difference between the fertiliser uptake efficiency of Castille and Winner. The combined efficiency with which the soil N and optimum fertiliser N rate were taken up was 77% across all of the crops that were analysed in this study.

6.2.3 Relationship between GAI and crop N content

In February, crops with a GAI of between 0.1 and 1.5 contained 49 kg N per unit of GAI (Figure 6.2). Crops with GAIs of between 1.5 and 2.5, which were measured at Rosemaund and Boxworth in 2007 and Rosemaund in 2008, contained about 40 kg N per unit of GAI on average. These crops grew in seasons with a mild autumn and winter which increased the rate of over winter growth and it is possible that the tissue N concentration becomes diluted under these conditions.

For crops measured at mid-flowering on 2007 and 2008 and the end of flowering in 2006, each unit of GAI up to the target GAI of 3.5 contained 43 kg N/ha (Figure 6.3). The slope of this regression line was not significantly different from a slope of 50 kg N per unit of GAI. The crops tested had either received no fertiliser or 120 kg N/ha and included Winner and Castille. There was no significant difference in the amount of N contained within each unit of GAI between N rate, variety, site or year.

The Canopy Management principles assume that each unit of GAI contains 50 kg N/ha. This assumption was made following work by Stokes *et al.* (1998) who demonstrated that each unit of GAI contains 50 kg N/ha using cv Apex grown with different management and sampled at a range of developmental stages and the GAIs ranged from 1 to 6. The work of this present study largely supports the assumption that each unit of GAI contains 50 kg N/ha. However further work should test whether large canopies in February resulting from a mild autumn/winter contain less than 50 kg N/ha and a wider range of varieties and conditions should be used to confirm that each unit of GAI contains 50 kg N at flowering.

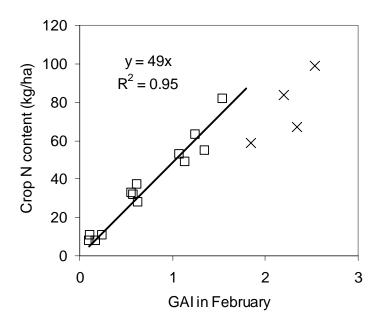


Figure 6.2. Relationship between GAI and crop N content measured in February for cvs Winner and Castille grown at Boxworth, High Mowthorpe and Rosemaund in 2006, 2007 and 2008. Crops of GAI 1.5 or below (squares), crops above GAI 1.5 (crosses).

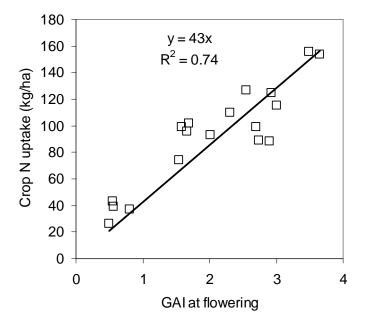


Figure 6.3. Relationship between GAI and crop N content at flowering for cvs Winner and Castille grown at 0 and 120 kg N/ha at Boxworth, High Mowthorpe and Rosemaund in 2006, 2007 and 2008.

6.2.4 Duration of N uptake

In 2006, there was no net N uptake after the end of flowering on average across the sites. In 2007 and 2008 the amount of N taken up after mid flowering was 74 kg N/ha and 27 kg N/ha respectively across all sites. Differences between sites were small (25 kg N/ha) compared with the differences between seasons. The large amount of N taken up after mid flowering in 2007 may have been related to the dry period between the end of March and early May in this season. This observation indicates that oilseed rape has the capacity to take up N after flowering under certain conditions and further work must investigate what determines the amount of N that is taken up after flowering and whether this varies between varieties.

6.2.5 Relationship between N requirement and yield

Whether or not the yield potential of each site affected the N supply required to achieve the yield potential was investigated by comparing the yield at the economic optimum (as calculated from the N response curves) with the supply of N available for crop uptake (100% of soil and crop N in February and 60% of the optimum fertiliser N) (Figure 6.4) to account for differences in soil residual N between sites. At each of the nine sites carried out within this study the average optimum yield across all treatments was used. In each experiment the optimum N rate was the same for all treatments. Data from an additional nine N response experiments from GrowHow UK Ltd were also included in the analysis. The regression analysis showed that each additional tonne of yield required an additional 36 kg/ha of crop available N. It is estimated that this would be equivalent to 36 kg/ha of soil mineral N or 60 kg/ha of fertiliser N for each additional tonne of yield.

These findings are consistent with two other datasets. Between 1988 and 1991, 28 N response experiments were carried out for the development of the RB209 Guidelines. Analysis of this data showed that the optimum N rate (calculated using a BER of 2.5 rose by 60 kg N/ha for each additional tonne of yield. Holmes and Ainsley (1979) analysed 41 N response experiments and showed that crops with an optimum yield of less than 2.5 t/ha had an N opt of 158 kg N/ha. Crops with an optimum yield of 2.5 to 3.5 t/ha had an N opt of 206 kg N/ha. Crops with an optimum yield of more than 3.5 t/ha had an N opt of 251 kg N/ha. This indicates that about an additional 50 kg N/ha is required for each additional tonne of yield.

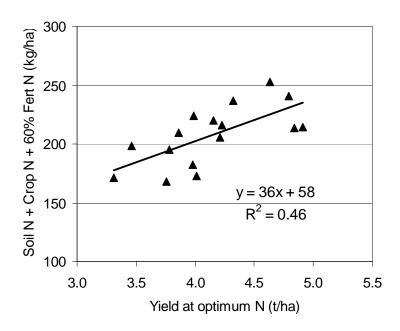


Figure 6.4. Relationship between the yield at the economic optimum N rate and the supply of N that is available for crop uptake. Each point represents data from an N response experiment.

6.3 Predicting fertiliser N requirement

The Canopy Management principles predict the optimum amount of fertiliser N based on measurements of the soil and crop N in February, a realistic estimate of the potential yield, together with assumptions about the efficiencies with which the crop takes up N from the soil and fertiliser. These principles were tested at each of the nine experimental sites described in this study and nine N response experiments from GrowHow. Each test was done retrospectively against the economic optimum calculated from the fitted linear plus exponential response curves (using a break even ratio of 2.5). The accuracy of the Canopy Management principles to predict optimum N rate was compared against RB209 guidelines; 1) using the book values to estimate the SNS and 2) using measured values of SNS. Each RB209 test included adding 30 kg N/ha for the sites which achieved a yield of more than 4 t/ha. The tests showed that the Canopy Management principles were the most accurate method of predicting the optimum N rate with an average error of +/- 32 kg N/ha for yield (Table 6.4). The second most accurate method that was tested was RB209 guidelines using measurements of soil and crop N which had an average error of 39 kg N/ha and 35 kg N/ha after accounting for the oil premia. Relying on RB209 look up tables to estimate the SNS, rather than taking a measurement, significantly increased the error to between 48 and 59 kg N/ha.

Table 6.4. Average error in the prediction of the fertiliser N requirement (kg N/ha).

	Optimum yield	Optimum yield after accounting for oil premia
RB209	+/- 48	+/- 59
RB209 with soil N measurements	+/- 39	+/- 35
Canopy Management	+/- 32	+/- 32

Based on 18 N response experiments between 2006 and 2008.

6.4 Folicur

Folicur applied at the green bud stage at a rate of 0.5 I/ha or 1.0 I/ha increased yield by up to 0.32 t/ha and did not cause any significant yield reductions. On average across all experiments Folicur increased the yield of Winner by 0.15 t/ha and Castille by 0.10 t/ha. Disease was minimised in all experiments using fungicides without growth regulatory activity. At Rosemaund in 2006, Folicur increased yield more for the Conventionally timed N treatments than for the Canopy Managed N treatments (P<0.1). There was no statistical evidence that Canopy Management affected the response to Folicur at any of the other sites. Folicur significantly increased the yield of Winner more than Castille at three sites. At least part of this effect resulted from the greater scope for lodging control in the more lodging prone variety Winner compared with Castille. Folicur increased yield more at high N rates at Rosemaund in 2008, but no other statistically significant interations between Folicur and N rate were observed in the other experiments. Numerically Folicur had a smaller effect when nil N was applied compared with higher rates. On average across all of the trials the yield response at nil N was 0.04 t/ha compared with 0.12 t/ha across the 60 to 360 kg N/ha treatments.

At the sites where Folicur significantly increased yield there was usually a significant reduction in lodging caused by Folicur. The reductions in lodging were at least partially caused by reductions in height of between 3 and 10 cm. There was no evidence of any differential height reduction between Canopy Management and Conventional N timings or between Winner and Castille. Greater height reductions occurred at higher N rates in only one experiment. Surprisingly large reductions in lodging were observed in response to relatively modest reductions in height in two experiments and further work should investigate whether Folicur reduces lodging by affecting other plant traits such as stem strength. It is possible that part of the yield increases were also caused by the Folicur treatment increasing the number of seeds set as a result of reducing

the amount of light absorbed and reflected by the flowers. Reduced light reflection from the flowers in response to Folicur was observed at 2 of the 5 sites where it was tested. At High Mowthorpe in 2007 the positive yield effect was unexpected because there was negligible lodging and the canopy at flowering was small. Although fungicides without growth regulatory activity were used in all of the experiments to minimise disease, it is possible that some yield response to Folicur resulting from disease control occurred at this site.

7. Conclusions

- Delaying N through using Canopy Management principles increased yield by up to 0.36 t/ha in situations where the crop would have produced an over-large and lodging-prone canopy.
- Following modifications to account for the start date for N application the Canopy Management approach was shown to be robust both with backward crops and where dry conditions in the spring delayed N uptake.
- The yield increase has been shown to be associated with reduced stem growth leading to shorter plants and less lodging, and possibly increased seed set.
- Methods of employing the Canopy Management principles have been developed so that they are applicable for all types of crop including low biomass varieties and crops with small amounts of N in the crop and soil in February.
- The assumptions that underlie Canopy Management have been validated within the series of experiments carried out within this study.
- Using the Canopy Management principles to calculate the N fertiliser requirement based on the amount of N in the crop and soil in the spring, together with the yield potential, is accurate across sites and seasons, and more accurate that RB209 guidelines.
- The application of Folicur at green bud increased yield by up to 0.32 t/ha and resulted in average yield increases across the 9 experiments in the presence of minimal amounts of disease of 0.15 t/ha for Winner and 0.10 t/ha for Castille.
 Using Canopy Managed N timings did not affect the size of the yield response.
- Further work must investigate how much of the N that is mineralised after
 February is taken up by the crop.
- The results from this project have been used to develop the 'N-Calc' fertiliser recommendation system run by Growhow UK Ltd and to revise the relationship between N rate and potential yield in the new RB209 guidelines.

8. References

- Berry, P.M. and Spink, J.H. (2006). A physiological analysis of oilseed rape yields: Past and future. *Journal of Agricultural Science, Cambridge* **144**, 381-392.
- Gryllis, J.P., Webb, J. and Dyer, C.J. (1997). Seasonal variation in response of winter cereals to nitrogen fertiliser and apparaent recovery of fertiliser on chalk soils in southern England. *Journal of Agricultural Science* **128**, 251
- Holmes, R.J. and Ainsley, A. (1979). Nitrogen top-dressing requirements of winter oilseed rape. *Journal of the Science of Food and Agriculture* **30**, 119-128. 262.
- Johnson, P.A., Shepherd, M.A. and Smith, P.N. (1997). The effects of crop husbandry and nitrogen fertiliser on nitrate leaching from a 5 course combinable crop rotation. *Soil Use Man.* **13**, 17-23.
- Lunn, G. D., Spink, J., Stokes, D. T., Wade, A., Clare, R. W. and Scott, R. K. (2001). Canopy Management in winter oilseed rape. Project Report No. OS49, pp. 86. HGCA, London.
- Lunn, G. D., Spink, J., Wade, A.and Clare, R. W. (2003). *Spring remedial treatments to improve canopy structure and yield in oilseed rape.* Project Report No. OS64, pp. 97. HGCA, London.
- Mortimer, N.D., Cormack, P., Elsayed, M.A. and Horne, R.E. (2003). Evaluation of the comparative energy, global warming and socio-economic benefits of biodiesel. Defra Final Report No 20/1.
- Schjoerring, J.K., Bock, J.G.H., Gammelvind, L., Jensen, C.R. and Morgensen, V.O. (1995). Nitrogen incorporation and remobilisation in different shoot components of field grown winter oilseed rape as affected by rate of nitrogen application and irrigation. Plant and Soil 177, 255-264.
- Stokes, D. T., Scott, R. K., Sylvester-Bradley, R., Clare, R., Hopkinson, J., Milford, G. F. J.and Salmon, S. E. (1997). An integrated approach to nitrogen nutrition for wheat. Project Report No. 159. HGCA, London, 220 pp.
- Stokes, D. T., Scott, R. K., Clare, R. W., Spink, J. H., Bullard, M. J.and Sylvester-Bradley, R. (1998). Establishment and canopy management in oilseed rape. In Proceedings of the Sixth Home-Grown Cereals Authority Research and Development Conference, Robinson College, Cambridge, HGCA, London, pp6.1-6.12.

- Sylvester-Bradley, R., Kindred, D.R., Blake, J., Dyer, C.J. and Sinclair, A.H. (2008).

 Optimising fertiliser nitrogen for modern wheat and barley crops. Project Report No. 438, pp. 116. HGCA, London.
- Webb, J.D. and Sylvester-Bradley, R. (1995). A comparison of the responses of two cultivars of late-autumn-sown wheat to applied nitrogen. *Journal of Agricultural Science* **125**, 11-24.

Appendix 1. Site details 2005/6

Site	ADAS Boxworth
Field name:	Top Pavements
Soil texture:	Clay, Hanslope series
Sowing date	08/09/05
Harvest date:	21/07/06
Previous cropping	
Harvest year	
2005	W Wheat
2004	W Wheat
2003	WOSR
Soil analyses 16/01/2006	
рН	8.4
Р	Index 2
K	Index 3
Mg	Index 2
Fertilisers (N, P, K, S)	
14/09/05	12:18:0:0 @ 400L/ha
06/03/06	Keiserite @ 150 kg/ha & TSP @ 326 kg/ha
Crop Protection	
Herbicides	
27/10/05	Aramo @ 1 L/ha
Insect/molluscicides	
15/09/05	Draza @ 5 kg/ha
29/09/06	Mini pellets @ 15 kg/ha
Fungicides	
27/10/06	Punch C @ 0.398 L/ha
07/02/06	Plover @ 0.249 L/ha
04/04/06	Folicur @ 1 L/ha (half trial)

Site	High Mowthorpe	
Field name:	Warren	
Soil texture:	Silty loam over chalk, Andover series	
Sowing date	28/08/05	
Harvest date:	05/08/06	
Previous cropping		
Harvest year		
2005	Winter barley	
2004	Winter wheat	
2003	Winter wheat	
Soil analyses		
	pH 8.0	
	P index 2	
	K index 2-	
	Mg index 1	
	OM% 4.13	
Fertilisers (N, P, K, S)		
22/03/06	1 st N split	
05/04/06	150 kg/ha Kieserite	
12/04/06	2 nd N split	
03/05/06	3 rd N split	
Crop Protection		
Herbicides		
18/11/05	Falcon (0.59 l/ha)	
Insect/molluscicides		
14/09/05	Divot slug pollots (E kg/bs)	
	Rivet slug pellets (5 kg/ha)	
18/11/05	Cypermethrin (0.25 l/ha)	
Fungicides		
18/11/05	Punch C (0.43 l/ha)	
24/04/06	Riza (0.7 l/ha)	
17/05/06	Proline (0.4 l/ha)	

Site	ADAS Rosemaund
Field name:	Benty Bear
Soil texture:	Silty loam, Bromyard series
Sowing date	06/09/05
Harvest date:	29/07/06
Previous cropping	
Harvest year	
2005	Winter Wheat
2004	Potatoes
2003	Winter wheat
Soil analyses	
P - 06/02/06	Index 2
K - 06/02/06	Index 1
Mg - 06/02/06	Index 3
pH - 06/02/06	6.7
Fertilisers	
06/04/06	Kieserite (170 kg/ha)
Crop Protection	
Herbicides	
15/11/06	Kerb Flo (1.75 l/ha)
22/03/06	Dow Shield (0.349 I/ha)
Insect/molluscicides	
02/10/05	Metaldehyde (4 kg/ha)
15/11/06	Hallmark (0.075l/ha)
Fungicides	
15/11/06	Plover (0.25 l/ha)
31/01/06	Plover (0.25 l/ha)

Appendix 2. Site details 2006/7

Site	ADAS Boxworth	
Field name:	Taylors	
Soil texture:	Clay, Hanslope series	
Sowing date	01/09/06	
Harvest date:	19/07/07	
Previous cropping	17707707	
Harvest year		
2006	W Wheat	
2005	W Wheat	
2004	W OSR	
Soil analyses 16/01/06		
	pH 7.7	
	P Index 3	
	K Index 3	
	Mg Index 3	
Fertilisers (N, P, K, S)		
, , , , , ,	N – applied to conventional plots	
26/02/07	various rates	
21/03/07	Keiserite (120 kg/ha)	
	N – applied to conventional and	
15/03/07	managed plots various rates	
04/04/07	N – applied to managed plots various	
04/04/07	rates	
Crop Protection		
Herbicides		
05/09/06	Glyphos (2.0 I/ha), Butisan (1.0 I/ha), Trifluralin 480 (2.0 I/ha)	
Insect/molluscicides		
05/09/06	Mini pellets (15 kg/ha)	
13/10/06	Cypermethrin (0.25 I/ha)	
01/05/07	Aphox (0.42 I/ha)	
J.,		
Fungicides		
13/10/06	Punch C (0.4 I/ha)	
09/12/06	Punch C (0.4 I/ha)	
14/03/07	Folicur applied to half trial (1.0 l/ha)	

Site	High Mowthorpe	
Field name:	Crow Tree	
Soil texture:	Silty loam over chalk, Andover series	
Sowing date	10/09/06	
Harvest date:	01/08/07	
Previous cropping		
Harvest year		
2006	Winter wheat	
2005	Spring beans	
2004	Winter wheat	
Soil analyses		
	pH 7.9	
	P Index 3	
	K index 2+	
	Mg index 1 OM -	
	OM	
	70	
Fertilisers (N, P, K, S)		
07/03/07	1 st N split	
15/03/07	Kieserite (150 kg/ha)	
02/04/07	2 nd N split	
16/04/07	3 rd N split	
28/04/07	Bittersaltz (10 kg/ha)	
	(ronging)	
Crop Protection		
Herbicides		
13/09/06	Katamaran (2.0 l/ha)	
02/11/06	Falcon (0.45 l/ha)	
Insect/molluscicides		
14/09/06	Mini slug pellets (8.0 kg/ha)	
02/11/06	Cypermethrin (0.26 l/ha)	
Fungicides		
02/11/06	Plover (0.3 l/ha)	
29/03/07	Punch C (0.4 I/ha)	
04/04/07	Folicur applied to half trial (1.0 l/ha)	
28/04/07	Proline (0.4 I/ha)	

Site	ADAS Rosemaund	
Field name:	Stoney	
Soil texture:	Silty Clay Loam (Bromyard Series)	
Sowing date	29/08/06	
Harvest date:	07/08/07	
Previous cropping		
Harvest year		
2006	Winter Oats	
2005	Winter Wheat	
2004	Winter Oats	
Soil analyses	pH 6.4 P 12 mg/l (index 1) K 157mg/l (index 2-) Mg 114mg/l (index 3) OM% 1.98%	
5 III (AL D. K. C)		
Fertilisers (N, P, K, S)	//: '	
30/03/07	Kieserite (92.5 kg/ha)	
Cran Dratastian		
Crop Protection		
Herbicides	(0.0.1/1.)	
19/09/06	Katamarran (2.0 I/ha)	
19/09/06	Laser (0.5 I/ha)	
27/10/06	Falcon (1.0 l/ha)	
Insect/molluscicides		
19/09/06	Cypermethrin (0.25 I/ha)	
17707700	Sypermounin (e.26 wita)	
Fungicides		
27/10/06	Plover (0.25 l/ha)	
01/02/07	Plover (0.25 I/ha)	
23/03/07	Folicur applied to half trial (1.0 l/ha)	
10/04/07	Proline (0.4 l/ha)	

Appendix 3. Site details 2007/8

Field name: 40 acres Soil texture: Clay loam Sowing date 05-09-07 Harvest date: 11/08/08 Previous cropping Harvest year 2007 Wheat 2006 Wheat 2005 OSR Soil analyses 29.02.08 PH 7.3 P 16 mg/l K 211 mg/l Mg 109 mg/l OM 2.92 % Fertilisers (N, P, K, S) 27/02/08 1st N treatment 01/04/08 Keiserite 150 kg/ha 02/04/08 2nd N treatment 21/04/08 Folicur to half the plots Herbicides 27/02/08 Crawler 3.5 l/ha 05/03/08 Galera 0.35 l/ha Insect/molluscicides 10/01/07 Draza slug pellets 6 kg/ha 08/11/07 Punch C - 0.4 l/ha Fungicides 12/11/07 Punch C - 0.4 l/ha 14/04/08 Punch C - 0.4 l/ha 14/04/08 Punch C - 0.4 l/ha	Site	ADAS Boxworth	
Sowing date 05-09-07 Harvest date: 11/08/08 Previous cropping Harvest year 2007 Wheat 2006 Wheat 2005 OSR Soil analyses 29.02.08 PH 7.3 P 16 mg/l K 211 mg/l Mg 109 mg/l OM 2.92 % Fertilisers (N, P, K, S) 27/02/08 1st N treatment 01/04/08 Keiserite 150 kg/ha 02/04/08 2nd N treatment 21/04/08 Folicur to half the plots Herbicides 27/02/08 Crawler 3.5 l/ha 05/03/08 Galera 0.35 l/ha Insect/molluscicides 10/01/07 Draza slug pellets 6 kg/ha 08/11/07 Punch C - 0.4 l/ha	Field name:		
Harvest date: 11/08/08 Previous cropping Harvest year 2007	Soil texture:		
Previous cropping	Sowing date	05-09-07	
Harvest year 2007 Wheat 2006 Wheat 2005 OSR Soil analyses 29.02.08 PH 7.3 P 16 mg/l K 211 mg/l Mg 109 mg/l OM 2.92 % Fertilisers (N, P, K, S) 27/02/08 1st N treatment 01/04/08 Keiserite 150 kg/ha 02/04/08 2nd N treatment 21/04/08 3rd N treatment Crop protection 14/04/08 Folicur to half the plots Herbicides 27/02/08 Crawler 3.5 l/ha 05/03/08 Galera 0.35 l/ha Insect/molluscicides 10/01/07 Draza slug pellets 6 kg/ha Fungicides 12/11/07 Punch C - 0.4 l/ha	Harvest date:	11/08/08	
2007 Wheat 2006 Wheat 2005 OSR Soil analyses 29.02.08 PH 7.3 P 16 mg/l K 211 mg/l Mg 109 mg/l OM 2.92 % Fertilisers (N, P, K, S) 27/02/08 1st N treatment 01/04/08 Keiserite 150 kg/ha 02/04/08 2nd N treatment 21/04/08 3rd N treatment Crop protection 14/04/08 Folicur to half the plots Herbicides 27/02/08 Crawler 3.5 l/ha 05/03/08 Galera 0.35 l/ha Insect/molluscicides 10/01/07 Draza slug pellets 6 kg/ha 08/11/07 Punch C - 0.4 l/ha	Previous cropping		
2006 Wheat 2005 OSR	Harvest year		
Soil analyses 29.02.08 PH 7.3 P 16 mg/l K 211 mg/l Mg 109 mg/l OM 2.92 %	2007	Wheat	
Soil analyses 29.02.08 PH 7.3 P 16 mg/l K 211 mg/l Mg 109 mg/l OM 2.92 % Fertilisers (N, P, K, S) 27/02/08 1st N treatment 01/04/08 Keiserite 150 kg/ha 02/04/08 2nd N treatment 21/04/08 3rd N treatment Crop protection 14/04/08 Folicur to half the plots Herbicides 27/02/08 Crawler 3.5 l/ha 05/03/08 Galera 0.35 l/ha Insect/molluscicides 10/01/07 Draza slug pellets 6 kg/ha 08/11/07 Punch C – 0.4 l/ha	2006	Wheat	
PH 7.3 P 16 mg/l K 211 mg/l Mg 109 mg/l OM 2.92 % Fertilisers (N, P, K, S) 27/02/08 1st N treatment 01/04/08 Keiserite 150 kg/ha 02/04/08 2nd N treatment 21/04/08 3rd N treatment Crop protection 14/04/08 Folicur to half the plots Herbicides 27/02/08 Crawler 3.5 l/ha 05/03/08 Crawler 3.5 l/ha Insect/molluscicides 10/01/07 Draza slug pellets 6 kg/ha 08/11/07 Punch C – 0.4 l/ha	2005	OSR	
P 16 mg/l K 211 mg/l Mg 109 mg/l OM 2.92 % Fertilisers (N, P, K, S) 27/02/08	_		
27/02/08 1st N treatment 01/04/08 Keiserite 150 kg/ha 02/04/08 2nd N treatment 21/04/08 3rd N treatment Crop protection 14/04/08 Folicur to half the plots Herbicides 27/02/08 Crawler 3.5 l/ha 05/03/08 Galera 0.35 l/ha Insect/molluscicides 10/01/07 Draza slug pellets 6 kg/ha 08/11/07 Draza slug pellets 4 kg/ha Fungicides 12/11/07 Punch C – 0.4 l/ha		P 16 mg/l K 211 mg/l Mg 109 mg/l	
27/02/08 1st N treatment 01/04/08 Keiserite 150 kg/ha 02/04/08 2nd N treatment 21/04/08 3rd N treatment Crop protection 14/04/08 Folicur to half the plots Herbicides 27/02/08 Crawler 3.5 l/ha 05/03/08 Galera 0.35 l/ha Insect/molluscicides 10/01/07 Draza slug pellets 6 kg/ha 08/11/07 Draza slug pellets 4 kg/ha Fungicides 12/11/07 Punch C – 0.4 l/ha	Fertilisers (N, P, K, S)		
02/04/082nd N treatment21/04/083rd N treatmentCrop protectionFolicur to half the plots14/04/08Folicur to half the plotsHerbicidesCrawler 3.5 I/ha27/02/08Crawler 3.5 I/ha05/03/08Galera 0.35 I/haInsect/molluscicides10/01/07Draza slug pellets 6 kg/ha08/11/07Draza slug pellets 4 kg/haFungicides12/11/07Punch C – 0.4 I/ha		1st N treatment	
21/04/08 Crop protection 14/04/08 Folicur to half the plots Herbicides 27/02/08 Crawler 3.5 I/ha 05/03/08 Galera 0.35 I/ha Insect/molluscicides 10/01/07 Draza slug pellets 6 kg/ha 08/11/07 Draza slug pellets 4 kg/ha Fungicides 12/11/07 Punch C – 0.4 I/ha	01/04/08	Keiserite 150 kg/ha	
Crop protection 14/04/08 Folicur to half the plots Herbicides 27/02/08 Crawler 3.5 I/ha 05/03/08 Galera 0.35 I/ha Insect/molluscicides 10/01/07 Draza slug pellets 6 kg/ha 08/11/07 Draza slug pellets 4 kg/ha Fungicides 12/11/07 Punch C – 0.4 I/ha	02/04/08	2 nd N treatment	
Herbicides 27/02/08 Crawler 3.5 I/ha 05/03/08 Galera 0.35 I/ha Insect/molluscicides 10/01/07 Draza slug pellets 6 kg/ha 08/11/07 Draza slug pellets 4 kg/ha Fungicides 12/11/07 Punch C – 0.4 I/ha	21/04/08	3 rd N treatment	
Herbicides 27/02/08	Crop protection		
27/02/08 Crawler 3.5 I/ha 05/03/08 Galera 0.35 I/ha Insect/molluscicides Draza slug pellets 6 kg/ha 08/11/07 Draza slug pellets 4 kg/ha Fungicides Punch C – 0.4 I/ha	14/04/08	Folicur to half the plots	
O5/03/08 Galera 0.35 I/ha Insect/molluscicides 10/01/07 Draza slug pellets 6 kg/ha 08/11/07 Draza slug pellets 4 kg/ha Fungicides 12/11/07 Punch C – 0.4 I/ha	Herbicides		
Insect/molluscicides 10/01/07 Draza slug pellets 6 kg/ha 08/11/07 Draza slug pellets 4 kg/ha Fungicides 12/11/07 Punch C – 0.4 l/ha			
10/01/07 Draza slug pellets 6 kg/ha 08/11/07 Draza slug pellets 4 kg/ha Fungicides 12/11/07 Punch C – 0.4 l/ha	05/03/08	Galera 0.35 I/ha	
08/11/07 Draza slug pellets 4 kg/ha Fungicides 12/11/07 Punch C – 0.4 l/ha	Insect/molluscicides		
Fungicides 12/11/07	10/01/07	Draza slug pellets 6 kg/ha	
12/11/07 Punch C – 0.4 I/ha	08/11/07	Draza slug pellets 4 kg/ha	
12/11/07 Punch C – 0.4 I/ha	Fungicides		
		Punch C – 0.4 I/ha	
	14/04/08		

Site	High Mowthorpe	
Field name:	Crow Wood	
Soil texture:	Shallow silt clay loam over chalk	
Sowing date	06/09/07	
Harvest date:	08/09/08	
Previous cropping		
Harvest year		
2007	W Wheat (2nd)	
2006	W Wheat (1st)	
2005	W OSR	
Soil analyses		
	pH 8	
	P 15 mg/l	
	K 125 mg/l	
	Mg 33 mgl OM	
	Civi	
Fertilisers (N, P, K, S)		
19/10/07	Extran – 94 kg/ha	
07/02/08	0:20:30 - 250 kg/ha	
Crop Protection		
29/4/08	Folicur spread on half plots	
Herbicides		
11/09/2007	Sultan (metazochlor) – 1 I/ha	
11/09/2007	Trifluralin (trifluralin) – 1.3 l/ha	
17/03/2008	Oram (bifenox) – 1 I/ha	
Insect/molluscicides		
10/09/2007	TDS Major	
02/10/2007	TDS Major	
08/10/2007	Cypermethrin – 0.25 I/ha	
19/05/2008	Mavrik – 0.2 I/ha	
Fungicides		
11/02/2008	Difcor – 0.25 I/ha	
17/04/2008	Proline – 0.4 l/ha	

Site	ADAS Rosemaund	
Field name:	19 Acres - Sutton S	St Nicholas,
	Herefordshire	
Soil texture:	Silt clay loam	
Sowing date	03/09/08	
Harvest date:	07 & 08/08/08	
Previous cropping		
Harvest year		
2007	W.Wheat	
2006	Peas	
2005	W.Wheat	
Soil analyses	Р	15 (mg/l)
	K	125
	Mg	167
	рН	7
Fertilisers (N, P, K, S)		
25/08/2007	0.0.60 – 185 kg/ha	
08/04/08	Keiserite – 151 kg/ha	
04/03/08	First N split	
28/03/08	Second N split	
14/04/08	Third N split	
Crop Protection		
04/04/08	Folicur applied to half the plots – 1 I/ha	
Herbicides		
03/09/2007	Treflan + Centium - 2I/ha +0.25I/ha	
Insect/molluscicides		
04/09/2007	Metaldehyde - 4kg/ha	
23/10/2007	Cypermethrin - 0.25I/ha	
Fungicides		
04/04/08	Contrast - 0.4I/ha	
22/04/08	Filan - 0.4kg/ha	